• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 52
  • 33
  • 18
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 450
  • 450
  • 202
  • 175
  • 129
  • 103
  • 95
  • 84
  • 70
  • 62
  • 59
  • 48
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Virtualized resource management in high performance fabric clusters

Ranadive, Adit Uday 07 January 2016 (has links)
Providing performance and isolation guarantees for applications running in virtualized datacenter environments requires continuous management of the underlying physical resources. For communication- and I/O-intensive applications running on such platforms, the management methods must adequately deal with the shared use of the high-performance fabrics these applications require. In particular, new classes of latency-sensitive and data-intensive workloads running in virtualized environments rely on emerging fabrics like 40+Gbps Ethernet and InfiniBand/RoCE with support for RDMA, VMM-bypass and hardware-level virtualization (SR-IOV). However, the benefits provided by these technology advances are offset by several management constraints: (i) the inability of the hypervisor to monitor the VMs’ usage of these fabrics can affect the platform’s ability to provide isolation and performance guarantees, (ii) the hypervisor cannot provide fine-grained I/O provisioning or perform management decisions for VMs, thus reducing the degree of consolidation that can be supported on the platforms, and (iii) without such support it is harder to integrate these fabrics into emerging cloud computing platforms and datacenter fabric management solutions. This is made particularly challenging for workloads spanning multiple VMs, utilizing physical resources distributed across multiple server nodes and the interconnection fabric. This thesis addresses the problem of realizing a flexible, dynamic resource management system for virtualized platforms with high performance fabrics. We make the following key contributions: (i) A lightweight monitoring tool, IBMon, integrated with the hypervisor to monitor VMs’ use of RDMA-enabled virtualized interconnects, using memory introspection techniques. (ii) The design and construction of a resource management system that leverages IBMon to provide latency-sensitive applications performance guarantees. This system is built on microeconomic principles of supply and demand and can be deployed on a per-node (Resource Exchange) or a multi-node (Distributed Resource Exchange) basis. Fine-grained resource allocations can be enforced through several mechanisms, including CPU capping or fabric-level congestion control. (iii) Sphinx, a fabric management solution that leverages Resource Exchange to orchestrate network and provide latency proportionality for consolidated workloads, based on user/application-specified policies. (iv) Implementation and experimental evaluation using InfiniBand clusters virtualized with the Xen or KVM hypervisor, managed via the OpenFloodlight SDN controller, and using representative data-intensive and latency-sensitive benchmarks.
92

LOW-COST TELEMETRY USING FREQUENCY HOPPING AND THE TRF6900™ TRANSCEIVER1

Thornér, Carl-Einar I., Iltis, Ronald A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The ISM bands have opened up new opportunities for telemetry using spread-spectrum communications. A low-cost frequency-hopping radio is described here for the 900 MHz ISM band that can be programmed with a wide range of hop and data rates. The ‘C6201 DSP from TI is used to control the frequency and data rate of the TI TRF6900 transceiver chip using a custom interface of the 6201 EVM board to the serial I/O on the 6900 evaluation board.
93

Wireless transceiver for the TLL5000 platform : an exercise in system design

Perkey, Jason Cecil 26 August 2010 (has links)
This paper will present the hardware system design, development, and plan for implementation of a wireless transceiver for The Learning Labs 5000 (TLL5000) educational platform. The project is a collaborative effort by Vanessa Canac, Atif Habib, and Jason Perkey to design and implement a complete wireless system including physical hardware, physical layer (PHY-layer) modulation and filters, error correction, drivers and user-interface software. While there are a number of features available on the TLL5000 for a wide variety of applications, there is currently no system in place for transmitting data wirelessly from one circuit board to another. The system proposed in this report is comprised of an external transceiver that communicates with a software application running on the TLL-SILC 6219 ARM9 processor that is interfaced with the TLL5000 baseboard. The details of a reference design, the hardware from the GNU Radio project, are discussed as a baseline and source of information. The state of the project and hardware design is presented as well as the specific portions of the project to which Jason Perkey made significant contributions. / text
94

Pasivní radiolokace / Passive emitter tracking

Hrach, Jan January 2019 (has links)
We have implemented a TDOA multilateration of transmitters on an unmodified rtl-sdr receiver using transmitters with known location as a timing reference. We present a brief theoretical background and describe the measurement process which includes several approaches that correct the timing and frequency errors between the receivers. Additionally, we have implemented an angle of arrival direction finder using coherent rtl-sdr.
95

Employing concepts of the SDN paradigm to support last-mile military tactical edge networks / Empregando conceitos de redes definidas por software para apoio à redes táticas militares de última milha

Zacarias, Iulisloi January 2018 (has links)
Em um futuro próximo, “dispositivos inteligentes” serão massivamente empregados em campos de batalha. Essa já é uma realidade, porém, o número de dispositivos utilizados em campos de batalha tende a aumentar em ordens de magnitude. As redes de comunicação de dados serão essenciais para transmitir os dados que esses dispositivos coletam e transformá-los em informações valiosas utilizadas como suporte à atuação humana. O suporte à tomada de decisão, ou mesmo níveis de autonomia, permitindo que estes dispositivos coordenem outros dispositivos, exigem comunicação contínua. Desafios relacionados à comunicação surgirão devido à dinamicidade do ambiente. A configuração da rede deve refletir decisões superiores automaticamente. A grande escala das redes conectando os altos escalões, tropas, veículos e sensores, aliada à falta de padronização dos dispositivos, tornará a integração destes desafiadora. Em um ambiente tão heterogêneo, muitos protocolos e tecnologias coexistirão. As redes de campo de batalha são um elemento de suma importância nas operações militares modernas e conceito de guerra centrada em rede é uma tendência sem volta e influencia desde os altos escalões até o controle de tropas Embora estudos tenham sido realizados nessa área, a maioria deles aborda redes estratégicas de alto nível e portanto não levam em conta as “redes táticas de última milha” (TEN), que compreendem dispositivos de comunicação com recursos limitados, como sensores ou ainda pequenos veículos aéreos não tripulados. Em uma tentativa de preencher esta lacuna, esse trabalho propõe uma arquitetura que combina conceitos dos paradigmas de redes definidas por software (SDN) juntamente com redes tolerantes à atraso/disrupçoes (DTN), para aplicação em redes táticas de última milha. O uso de SDN em cenários com nodos móveis é avaliado considerando uma aplicação de vigilância que utiliza streaming de vídeo e medidas de Qualidade de Experiência (QoE) de usuário são coletadas. Com base nos resultados obtidos, uma aplicação em conjunto dos conceitos de SDN e DTN é proposta, além disso abordamos a escolha do nodo que atuará como controlador SDN na rede. Os experimentos foram executados utilizando um emulador de redes. Apesar de pesquisas adicionais serem necessárias – considerado requisitos de segurança, por exemplo – os resultados foram promissores e demonstram a aplicabilidade destes conceitos no cenários das TENs. / The future battlefield tends to be populated by a plethora of “intelligent things”. In some ways, this is already a reality, but in future battlefields, the number of deployed things should be orders of magnitude higher. Networked communication is essential to take real advantage of the deployed devices on the battlefield, and to transform the data collected by them into information valuable for the human warfighters. Support for human decision making and even a level of autonomy, allowing devices to coordinate and interact with each other to execute their activities in a collaborative way require continuous communication. Challenges regarding communication will arise from the high dynamics of the environment. The network adaption and management should occur autonomously, and it should reflect upper-level decisions. The large scale of the network connecting high-level echelons, troops on the field, and sensors of many types, beside the lack of communication standards turn the integration of the devices more challenging. In such a heterogeneous environment, many protocols and communication technologies coexist. This way, battlefield networks is an element of paramount importance in modern military operations Additionally, a change of paradigm regarding levels of autonomy and cooperation between humans and machines is in course and the concept of network-centric warfare is a no way back trend. Although new studies have been carried out in this area, most of these concern higher-level strategic networks, with abundant resources. Thus, these studies fail to take into account the “last-mile Tactical Edge Network (TEN) level,” which comprises resource constrained communication devices carried by troopers, sensor nodes deployed on the field or small unmanned aerial vehicles. In an attempt to fill this gap, this work proposes an architecture combining concepts from software-defined networking (SDN) paradigm and the delay-tolerant approach to support applications in the last-mile TEN. First, the use of SDN in dynamic scenarios regarding node positioning is evaluated through a surveillance application using video streaming and Quality of Experience (QoE) measures are captured on the video player. We also explore the election of nodes to act as SDN Controllers in the TEN environment. The experiments use emulator for SDN with support to wireless networks. Further investigation is required, for example, considering security requirements, however the results are promising and demonstrate the applicability of this architecture in the TEN network scenario.
96

Enhancing performance of conventional computer networks employing selected SDN principles

Hasan, Hasanein January 2016 (has links)
This research is related to computer networks. In this thesis, three main issues are addressed which affect the performance of any computer network: congestion, efficient resources utilization and link failure. Those issues are related to each other in many situations. Many approaches have been suggested to deal with those issues as well as many solutions were applied. Despite all the improvements of the technology and the proposed solutions, those issues continue to be a burden on the system’s performance. This effect is related to the increase of the Quality of Service (QoS) requirements in modern networks. The basic idea of this research is evolving the intelligence of a conventional computer network when dealing with those issues by adding some features of the Software Defined Networking (SDN). This adoption upgrades the conventional computer network system to be more dynamic and higher self-organizing when dealing with those issues. This idea is applied on a system represented by a computer network that uses the Open Shortest Path First (OSPF) routing protocol. The first improvement deals with the distribution of Internet Protocol (IP) routed flows. The second improvement deals with tunnel establishment that serves Multi-Protocol Label Switching (MPLS) routed flows and the third improvement deals with bandwidth reservation when applying network restoration represented by Fast Re-route (FRR) mechanism to sooth the effect of link failure in OSPF/MPLS routed network. This idea is also applied on another system that uses the Enhanced Interior Gateway Routing Protocol (EIGRP) to improve the performance of its routing algorithm. Adopting the SDN notion is achieved by adding an intelligent controller to the system and creating a dialog of messages between the controller and the conventional routers. This requires upgrading the routers to respond to the new modified system. Our proposed approaches are presented with simulations of different configurations which produce fine results.
97

Real-Time Software-Defined-Radio Implementation of a Two Source Distributed Beamformer

McGinley, James W 08 January 2007 (has links)
This thesis describes a real-time software-defined-radio implementation of a two source distributed beamformer. The technique in this thesis can be used to synchronize the carriers of two single antenna wireless transmitters (i.e. ``sources") with independent local clocks so that their bandpass transmissions arrive in-phase at an intended receiver (i.e. ``destination"). Synchronization is achieved via: (i) an unmodulated beacon transmitted by the destination to the sources and (ii) a pair of secondary unmodulated beacons between the sources. No explicit channel state information is exchanged between the sources and/or the destination. Using this method, it is possible to realize a two-source distributed beamformer that provides a reduction in overall transmit energy and increased security due to the directionality of the transmitted signal. System characterization results are provided along with experimental results for both time-invariant and time-varying channels. The experimental results in this thesis confirm the theoretical predictions and also provide explicit guidelines for a real-time implementation of a two-source distributed beamforming system.
98

Cognitive Radio Connectivity for Railway Transportation Networks

Gill, Kuldeep S 22 January 2018 (has links)
Reliable wireless networks for high speed trains require a significant amount of data communications for enabling safety features such as train collision avoidance and railway management. Cognitive radio integrates heterogeneous wireless networks that will be deployed in order to achieve intelligent communications in future railway systems. One of the primary technical challenges in achieving reliable communications for railways is the handling of high mobility environments involving trains, which includes significant Doppler shifts in the transmission as well as severe fading scenarios that makes it difficult to estimate wireless spectrum utilization. This thesis has two primary contributions: (1) The creation of a Heterogeneous Cooperative Spectrum Sensing (CSS) prototype system, and (2) the derivation of a Long Term Evolution for Railways (LTE-R) system performance analysis. The Heterogeneous CSS prototype system was implemented using Software-Defined Radios (SDRs) possessing different radio configurations. Both soft and hard-data fusion schemes were used in order to compare the signal source detection performance in real-time fading scenarios. For future smart railways, one proposed solution for enabling greater connectivity is to access underutilized spectrum as a secondary user via the dynamic spectrum access (DSA) paradigm. Since it will be challenging to obtain an accurate estimate of incumbent users via a single-sensor system within a real-world fading environment, the proposed cooperative spectrum sensing approach is employed instead since it can mitigate the effects of multipath and shadowing by utilizing the spatial and temporal diversity of a multiple radio network. Regarding the LTE-R contribution of this thesis, the performance analysis of high speed trains (HSTs) in tunnel environments would provide valuable insights with respect to the smart railway systems operating in high mobility scenarios in drastically impaired channels.
99

Leveraging Software-Defined Networking and Virtualization for a One-to-One Client-Server Model

Taylor, Curtis R 30 April 2014 (has links)
Modern computer networks allow server resources to be shared. While this multiplexing is the unsung hero of scalability and performance, the fact that clients are sharing resources and each client’s network traffic is transmitted in a larger pool of the total network traffic, poses distinct challenges for security. By adopting multiplexing so broadly, the networking and systems communities have implicitly favored performance over security. When servers multiplexing clients are compromised, the attack is able to spread by exploiting unsuspecting clients sharing the resource. Drive-by-downloads are an example of an attack where a Web server is compromised and begins distributing malware to connecting clients. As a result of using today’s many-to-one client-server network model, current approaches are inadequate at protecting the network and its resources. We propose a redesign of the modern network infrastructure. Our approach involves moving from the current many-to-one client-server model to a one-to-one client-server model. In redesigning the network, we provide a means of better accountability for traffic between clients and servers. With accountability, we enable the ability to quickly determine which client is responsible for an attack. This allows us to quickly repair the affected entities. To accomplish this accountability, we separate each client’s communication into separate flows. A flow is identified by various network features, such as IP addresses and ports. Further, instead of allowing multiple clients to be multiplexed at the same server, we use a technique that allows each client to communicate with a server that is logically separate from all other clients. Accordingly, a server compromise only effects a single client. We create a one-to-one client-server model using virtualization techniques and OpenFlow, a software-defined network (SDN) protocol. We complete our model in three phases. In the first, we deploy a physical SDN using physical machines and a commodity network switch that supports OpenFlow to gain an initial understanding of SDNs. The next phase involves implementation of Choreographer, a DNS access control mechanism, in a virtualized SDN environment for better scalability over our physical configuration. Finally, we leverage Choreographer to dynamically instantiate a server for each client and create network flows that allow a client to reach the requested server.
100

Real-Time Software-Defined-Radio Implementation of Time-Slotted Carrier Synchronization for Distributed Beamforming

Zhang, Boyang 05 May 2009 (has links)
This thesis describes a real-time software-defined-radio implementation of the time-slotted round-trip carrier synchronization protocol in two-source and three-source communication systems. The techniques developed in this thesis can be used to synchronize the carriers of two or three single-antenna wireless transmitters with independent local oscillators so that their band-pass transmissions combine constructively at an intended receiver. Synchronization is achieved via the time-slotted transmission of (i) an unmodulated primary beacon from the destination to the sources and (ii) a series of secondary unmodulated beacons between the sources. Explicit channel state information is not exchanged between the sources and/or the destination. When synchronized, the single-antenna sources are able to cooperatively transmit as a distributed beamformer and achieve increased transmission range, reduced transmission energy, and/or increased security. The experimental results in this thesis confirm the theoretical predictions and also provide explicit guidelines for the real-time implementation of a carrier synchronization technique suitable for distributed transmit beamforming.

Page generated in 0.1219 seconds