• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 17
  • 17
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Kinetic study of low temperature sulfur dioxide and hydrogen chloride removal using calcium-based sorbents

Zhan, Rijing January 1999 (has links)
No description available.
72

Filter Materials for Sorption of Cu and Zn in Stormwater Treatment: A Batch Equilibrium and Kinetic study

Norman, Per-Albin January 2018 (has links)
Urban stormwater is today recognized as a significant source of pollution that has contributed to the deterioration of water quality in lakes and streams. Of the pollutants, metals are commonly occurring in stormwater and can cause major damage when released into the receiving waters. A promising treatment method for removing these metals before it reaches the receiving waters is to filter the water in various filter technologies such as catch basin inserts. In this study, the potential of five materials to remove dissolved copper (Cu) and zinc (Zn) from stormwater was investigated. The study was initiated with batch equilibrium tests to assess the sorption capacity of the materials at different metal concentrations relevant for stormwater. This was done in both single and binary batches to investigate whether or not any competitive sorption occurred between the metals. Langmuir, Freundlich and Sips isotherm models were adapted to the obtained data. Through geochemical modelling, it was also possible to investigate whether precipitation of metals was likely. Finally, kinetic studies were conducted to investigate whether the reaction rate of Cu and Zn was relevant in the context of catch basin inserts. The results showed that the biochar had the highest sorption capacity followed by peat, bark, milkweed, and polypropylene. It could also be noted that Cu competed with Zn binding sites at high concentrations and that the sorption capacity of biochar, peat and bark, at concentrations between 50-100 μg/l Cu and 50-500 μg/l Zn, was sufficient to meet the limits set for stormwater emissions. For these sorbents, the reaction rate was also significant. Kinetics tests showed that at an initial concentration of 1,000 μg/l, 83% of the metals were sorbed after 5 minutes and after 10 minutes this number was 93%. Bark and peat also showed low effluent pH and leaching of dissolved organic carbon (DOC). The Langmuir and pseudo-second order equation could be well adapted to the data while geochemical modelling showed that precipitation of metals was unlikely. This suggests that chemical adsorption may be the mechanism that largely accounted for the removal of Cu and Zn. The results of this study can hardly be used to estimate the field performance of stormwater filters, but can be used as a basis for comparing and selecting sorbents for subsequent column tests. / I denna studie undersöktes potentialen för fem material att avskilja löst koppar (Cu) och zink (Zn) från dagvatten. Studien inleddes med skaktest för att testa sorptionsförmågan hos materialen vid olika metallkoncentrationer relevant för dagvatten. Detta gjordes i både singel och binära test för att undersöka om någon konkurrerande sorption skedde mellan metallerna. Langmuirs, Freundlichs och Sips isotermmodeller anpassades även till resultatet. Genom geokemisk modellering var det även möjlig att undersöka om utfällning av metaller var sannolik. Till sist gjordes kinetiska studier för att undersöka om reaktionshastigheten för sorption av Cu och Zn till filtermaterialen var relevanta i ett brunnsfiltersammanhang. Resultaten visar att biokol hade den största sorptionsförmågan följt av torv, bark, sidenört och polypropylen. Det kunde även konstateras att koppar konkurrerade om sorptionsplatser för zink vid högre koncentrationer och att sorptionskapaciteten för biokol, torv och bark, vid koncentrationer mellan 50-100 µg/l Cu och 50-500 µg/l Zn, är tillräckligt hög för att uppfylla gränsvärdena för utsläpp av dagvatten. För dessa sorbenter var reaktionshastigheten betydande. Kinetiktesten visade att vid en initial koncentration på 1,000 µg/L var 83% av metallerna sorberade efter 5 minuter och efter 10 minuter var denna siffra uppe i 93%. Bark and torv uppvisade även ett lågt uppmätt pH och lakade löst organisk kol (DOC). Langmuir och pseudo-andra ordningens ekvation kunde anpassas väl till datat samtidigt som den geokemiska modelleringen visade att utfällning av metaller var osannolikt. Detta antyder att kemisk adsorption kan vara den mekanism som till störst del stod för avskiljningen av Cu och Zn. Studien kan inte fastställa något om filtermaterialens fältprestanda, men kan användas som underlag för att jämföra och att välja sorbenter för efterföljande kolumntester. / Formas project 2016-75
73

Sunkiųjų metalų ir naftos produktų kelio aplinkoje tyrimai ir mažinimas naudojant gamtinius sorbentus / Investigation of heavy metals and petroelum products in the roadside environent and remediation by natural sorbents

Brannvall, Evelina 01 June 2006 (has links)
The pollution by heavy metals in the roadside soil alteration tendency was thoroughly investigated by applying the complex experimental and statistical environmental analysis and means for pollution by heavy metals and petroleum products reduction by natural zeolite and vermiculite were evaluated and developed. To reach the novelty it was: • The roadside soil pollution by heavy metals, it’s dangerous and pollution variation tendencies were investigated. • The suitability of natural zeolite for heavy metal removal from soil and aquatic solutions was proved. • The suitability of natural zeolite and vermiculite for petroleum products removal from aquatic solutions was proved.
74

Removal Of Hydrogen Sulfide By Regenerable Metal Oxide Sorbents

Karayilan, Dilek 01 June 2004 (has links) (PDF)
ABSTRACT REMOVAL OF HYDROGEN SULFIDE BY REGENERABLE METAL OXIDE SORBENTS Karayilan, Dilek M.S., Department of Chemical Engineering Supervisor : Prof. Dr. Timur Dogu Co-Supervisor: Prof. Dr. G&uuml / lSen Dogu June 2004, 166 pages High-temperature desulfurization of coal-derived fuel gases is an essential process in advanced power generation technologies. It may be accomplished by using metal oxide sorbents. Among the sorbents investigated CuO sorbent has received considerable attention. However, CuO in uncombined form is readily reduced to copper by the H2 and CO contained in fuel gases which lowers the desulfurization efficiency. To improve the performance of CuO-based sorbents, they have been combined with other metal oxides, forming metal oxide sorbents. Sulfidation experiments were carried out at 627 oC using a gas mixture composed of 1 % H2S and 10 % H2 in helium. Sorbent regeneration was carried out in the same reactor on sulfided samples at 700 oC using 6 % O2 in N2. Total flow rate of gas mixture was kept at 100 ml/min in most of the experiments. In this study, Cu-Mn-O, Cu-Mn-V-O and Cu-V-O sorbents were developed by using complexation method. Performance of prepared sorbents were investigated in a fixed-bed quartz microreactor over six sulfidation/regeneration cycles. During six cycles, sulfur retention capacity of Cu-Mn-O decreased slightly from 0.152 to 0.128 (g S)/(g of Sorbent) while some decrease from 0.110 to 0.054 (g S)/(g of Sorbent) was observed with Cu-Mn-V-O. Cu-V-O showed a very good performance in the first sulfidation and excessive thermal sintering in the first regeneration prevented further testing. Sulfur retention capacity of Cu-V-O was calculated as 0.123 (g S)/(g of Sorbent) at the end of the first sulfidation. In addition, SO2 formation in sulfidation experiments was observed only with Cu-V-O sorbent.
75

Aplicação de polissiloxanos imobilizados sobre sílica como fase estacionária e como sorvente na determinação de agrotóxicos em água e caldo de cana / Application of polysiloxanes immobilized on silica as stationary phases and as sorbents in the determination of agrotoxics in water and sugar cane juice

Vigna, Camila Rosa Moraes 06 February 2010 (has links)
Orientadores: Carol Hollingworth Collins, Carla Beatriz Grespan Bottoli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-16T14:14:29Z (GMT). No. of bitstreams: 1 Vigna_CamilaRosaMoraes_D.pdf: 1190348 bytes, checksum: ab228c805aba8ca12b954e0202343664 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho verificou-se a potencialidade de uso de sorventes e fases estacionárias (FE), obtidos a partir da sorção e/ou imobilização do polímero poli(metiloctilsiloxano) (PMOS) sobre suportes de sílica Kromasil utilizando tamento térmico, na separação, quantificação e validação de uma metodologia para análise de agrotóxicos em amostras de água e caldo de cana-de-açúcar (garapa). Os materiais desenvolvidos foram caracterizados com testes químicos e físicos e aplicados nas etapas de concentração das amostras por extração em fase sólida nos modos off-line e on-line, com posterior separação, por Cromatografia Líquida de Alta Eficiência com detecção UV-Vis. Utilizou-se também o método QuEChERS como alternativa na etapa de extração das amostras de garapa. Os sorventes PMOS mostraram desempenho comparável aos sorventes comerciais, além de sua preparação ser simples, rápida e de menor custo. A FE Kromasil/PMOS utilizada propiciou uma boa separação entre os componentes das amostras de diversos agrotóxicos analisados, similar as fases comerciais, com boas eficiências, resolução e seletividade. A metodologia desenvolvida foi validada e mostrou bons resultados de recuperação para todos os agrotóxicos, além de precisão < 15% e coeficiente de correlaçã > 0,99. O limite de quantificação do método permitiu que os limites máximos de resíduos impostos pelas agências reguladoras para todos os compostos estudados fossem atingidos. Os métodos desenvolvidos e validados foram aplicados na análise de amostras de garapa do comércio local. Não foram observados níveis detectáveis dos agrotóxicos estudados nas amostras analisadas / Abstract: This work investigated the potentiality of use of sorbents and stationary phases (SP), obtained from the sorption and/or immobilization of poly(methyloctylsiloxane) (PMOS) onto the surface of a porous silica Kromasil support using heat, in the separation, quantification and validation of a methodology for analysis of agrochemicals in water and sugar cane samples. Physical-chemical characterization of the developed materials were carried out and applied in the concentration step of the samples in solid phase extraction (SPE) in off-line and on-line mode, with posterior separation, for High Performance Liquid Chromatography (HPLC) with UV-Vis detection. The QuEChERS method (Quick, Easy, Cheap, Effective and Safe) was also used as alternative in the extraction of the sugar cane samples. PMOS sorbents showed comparable performance to the commercial sorbents, with simple, fast and cheap preparation. The Kromasil/PMOS SP used demonstrated a good separation to the components of the samples of agrotoxics analyzed, similar to the commercial phases, with good efficiencies, resolution and selectivity. The developed methodology was validated and showed good results of recovery for the agrotoxics, with precision value < 15 % and correlation coefficient > 0,99. The limit of quantification (LQ) of the method allowed that the maximum residues limits (MRL) for the regulating agencies for all the studied compounds were reached. The developed and validated methods were applied in the analysis of sugar cane samples of the local commerce. Detectable levels of the agrochemicals studied in the analyzed samples were not detected / Doutorado / Quimica Analitica / Doutor em Ciências
76

Optimalizace adsorpce kyseliny ferulové na různých typech adsorbentů / Optimalization of ferulic acid adsorption on different types of adsorbents

Bariyeva, Aizat January 2019 (has links)
This thesis deals with optimalization processes of adsorption of ferulic acid on different types of sorbents. Specifically, was used the activated carbon as a sorbent of heterogeneous character and Amberlyst A-21 and Amberlit XAD-16 as macroporous polymer sorbents. The ferulic acid is fully characterized in the theoretical part and are discussed the problems of adsorption processes. To determination of the phenolic acid were used UV-VIS and HPLC instrumental methods. The main aim of the experimental part is to optimize various parameters of adsorption, including the construction of adsorption isotherms, determination of maximum adsorption capacity of individual sorbents, study of kinetics and mechanisms of adsorption. Determination of the influence of salt was studied to assess the impact of the inorganic salts on the ferulic acid adsorption capacity. Based on these parameters, was carried out determination of an optimal pH value on 3, with an optimal adsorbent load (m/V ratio = 0,009 gml-1) and a contact time of 50 min for all three adsorbents. Equilibrium studies described by adsorption isotherms and the Langmiur model fitted the best, and the maximum adsorption capacities were determined for all three sorbents with 150,4 mgg-1 for activated carbon, 209,1 mgg-1 for Amberlyst A-21 and 82 mgg-1 for Amberlyte XAD-16. In the study of kinetic models was selected pseudo-second model for all three adsorbents, which correlated with the results obtained by the Langmuir isotherm. The decrease in adsorption capacity in the determination of NaCl influence was 4 % for activated carbon, for macroporous polymer sorbents was decreased by 52 % and 55 % for Amberlyst A-21 and Amberlyt XAD-16 respectively. In a selectivity test under optimized conditions, adsorption strength increased in the order of sinapic acid ferulic acid p-coumaric acid for polymeric sorbent XAD-16 and activated carbon. For the A-21 sorbent the adsorption strength increased in the order of p-coumaric acid ferulic acid sinapic acid. The results of the work indicate the suitability of all three sorbents for the phenolic acid adsorption.
77

Reactivation Mechanism Studies on Calcium-Based Sorbents and its Applications for Clean Fossil Energy Conversion Systems

Yu, Fu-Chen 17 March 2011 (has links)
No description available.
78

Sorbentų naudojimo paviršinėms nuotekoms valyti tyrimai ir analizė / Research and analysis of sorbent usage for storm water run-off purification

Levickaitė, Giedrė 20 June 2011 (has links)
Didžiausiais paviršinių nuotekų teršalais laikomi naftos produktai ir skendinčiosios medžiagos. Pastarąsias galima nesunkiai pašalinti taikant tradicinius paviršinių nuotekų valymo metodus, tokius kaip nusodinimas, o naftos produktų šalinimui reikalingas antrinis nuotekų valymas. Vienas efektyviausių NP šalinimo iš nuotekų būdas yra filtravimas pro sorbuojančiosios medžiagos filtrą. Nors šiuo būdu valant nuotekas galima pasiekti didelio teršalų šalinimo efektyvumo, praktiškai dažnai susiduriama su problema, kai į eksploatuojamuosius valymo įrenginius nuotekos atiteka dideliais greičiais ir teršalai nėra iki galo pašalinami. Todėl šiame darbe buvo atliktas trijų skirtingų sintetinių sorbentų („Fibroil, „Duck“, „Reo-dry“) efektyvumo šalinti iš paviršinių nuotekų naftos produktus ekstremaliomis sąlygomis (esant dideliems greičiams) eksperimentinis tyrimas. Atlikus bandymus su dirbtinėmis ir realiomis paviršinėmis nuotekomis laboratoriniame stende, nustatyta, kad visų trijų sorbentų efektyvumas šalinti NP yra panašus ir skendinčiosios medžiagos bei nuotekų drumstumas neturi įtakos NP šalinimo efektyvumui. Tačiau „Fibroil“ sorbentą naudojant kaip filtro užpildą, 30 m/h greitį galima išlaikyti gerokai ilgiau nei su sorbentais „Duck“ ir „Reo-dry“ ir šį sorbentą naudoti ekonomiškiausia. Darbą sudaro 8 dalys: įvadas, darbo aktualumo aprašymas, literatūros apžvalga, tiriamojo darbo metodikos aprašymas, eksperimeto rezultatai, rekomendacijos ir išvados bei literatūros sąrašas. Darbo... [toliau žr. visą tekstą] / Suspended solids and oil products are considered as the most important pollutants in the storm water. As suspended solids can be easily retained from storm water by simple sedimentation, for oil products it is usually needed to have a secondary treatment: filtration through sorbents media. Although storm water filtration through a sorbent filter gives high treatment efficiency, it is usually impossible to ensure the right speed of storm water coming to the treatment facilities (it is usually too high to ensure an efficient sorption). For this reason the research and analysis of three different synthetic sorbents („Fibroil“, „Duck“, „Reo-dry“) were performed with artificial and real storm water in the laboratory under extreme conditions (filtration speed 30 m/h). According to the results of the experiment, all three sorbents have similar treatment efficiency and suspended solids and turbidity has no impact on oil products removal efficiency. But it is more efficient to use “Fibroil” and it is suitable for filtration under 30 m/h speed much longer than sorbents “Duck” and “Reo-dry”. Structure: introduction, relevance, methodology, results of the experiment, recomedations conclusions and references. Thesis consist of: 55 p. text without appendixes, 21 pictures, 8 tables, 39 bibliographical entries.
79

Development of seaweed biomass as a biosorbent for metal ions removal and recovery from industrial effluent.

January 2000 (has links)
by Lau Tsz Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 134-143). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Contents --- p.vi / List of Figures --- p.xi / List of Tables --- p.xv / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Reviews --- p.1 / Chapter 1.1.1 --- Heavy metals in the environment --- p.1 / Chapter 1.1.2 --- Heavy metal pollution in Hong Kong --- p.3 / Chapter 1.1.3 --- Electroplating industries in Hong Kong --- p.7 / Chapter 1.1.4 --- "Chemistry, biochemistry and toxicity of selected metal ions: copper, nickel and zinc" --- p.8 / Chapter a. --- Copper --- p.10 / Chapter b. --- Nickel --- p.11 / Chapter c. --- Zinc --- p.12 / Chapter 1.1.5 --- Conventional physico-chemical methods of metal ions removal from industrial effluent --- p.13 / Chapter a. --- Ion exchange --- p.14 / Chapter b. --- Precipitation --- p.14 / Chapter 1.1.6 --- Alternative for metal ions removal from industrial effluent: biosorption --- p.15 / Chapter a. --- Definition of biosorption --- p.15 / Chapter b. --- Mechanisms involved in biosorption of metal ions --- p.17 / Chapter c. --- Criteria for a good metal sorption process and advantages of biosorption for removal of heavy metal ions --- p.19 / Chapter d. --- Selection of potential biosorbent for metal ions removal --- p.20 / Chapter 1.1.7 --- Procedures of biosorption --- p.23 / Chapter a. --- Basic study --- p.23 / Chapter b. --- Pilot-scale study --- p.25 / Chapter c. --- Examples of commercial biosorbent --- p.27 / Chapter 1.1.8 --- Seaweed as a potential biosorbent for heavy metal ions --- p.27 / Chapter 1.2 --- Objectives of study --- p.30 / Chapter 2. --- Materials and Methods --- p.33 / Chapter 2.1 --- Collection of seaweed samples --- p.33 / Chapter 2.2 --- Processing of seaweed biomass --- p.33 / Chapter 2.3 --- Chemicals --- p.33 / Chapter 2.4 --- Characterization of seaweed biomass --- p.39 / Chapter 2.4.1 --- Moisture content of seaweed biomass --- p.39 / Chapter 2.4.2 --- Metal ions content of seaweed biomass --- p.39 / Chapter 2.5 --- Characterization of metal ions biosorption by seaweed --- p.39 / Chapter 2.5.1 --- Effect of biomass weight and selection of biomass --- p.39 / Chapter 2.5.2 --- Effect of pH --- p.40 / Chapter 2.5.3 --- Effect of retention time --- p.41 / Chapter 2.5.4 --- Effect of metal ions concentration --- p.41 / Chapter 2.5.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.43 / Chapter 2.5.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening for suitable desorbing agents --- p.44 / Chapter 2.5.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.45 / Chapter 2.5.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.45 / Chapter 2.6 --- Statistical analysis of data --- p.46 / Chapter 3. --- Results --- p.47 / Chapter 3.1 --- Effect of biomass weight and selection of biomass --- p.47 / Chapter 3.1.1 --- Effect of biomass weight --- p.47 / Chapter 3.1.2 --- Selection of biomass --- p.58 / Chapter 3.2 --- Effect of pH --- p.58 / Chapter 3.2.1 --- Cu2+ --- p.58 / Chapter 3.2.2 --- Ni2+ --- p.61 / Chapter 3.2.3 --- Zn2+ --- p.61 / Chapter 3.2.4 --- Determination of optimal condition for biosorption of Cu2+ ,Ni2+ and Zn2+ by Ulva lactuca --- p.67 / Chapter 3.3 --- Effect of retention time --- p.67 / Chapter 3.4 --- Effect of metal ions concentration --- p.73 / Chapter 3.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.73 / Chapter 3.4.2 --- Langmuir adsorption isotherm --- p.73 / Chapter 3.4.3 --- Freundlich adsorption isotherm --- p.77 / Chapter 3.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.81 / Chapter 3.5.1 --- Effect of mix-cations --- p.81 / Chapter 3.5.2 --- Effect of mix-anions --- p.85 / Chapter 3.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.91 / Chapter 3.6.1 --- Cu2+ --- p.91 / Chapter 3.6.2 --- Ni2+ --- p.91 / Chapter 3.6.3 --- Zn2+ --- p.91 / Chapter 3.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.94 / Chapter 3.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.97 / Chapter 4. --- Discussion --- p.106 / Chapter 4.1 --- Effect of biomass weight and selection of biomass --- p.106 / Chapter 4.1.1 --- Effect of biomass weight --- p.106 / Chapter 4.1.2 --- Selection of biomass --- p.107 / Chapter 4.2 --- Effect of pH --- p.109 / Chapter 4.3 --- Effect of retention time --- p.112 / Chapter 4.4 --- Effect of metal ions concentration --- p.114 / Chapter 4.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.114 / Chapter 4.4.2 --- Langmuir adsorption isotherm --- p.114 / Chapter 4.4.3 --- Freundlich adsorption isotherm --- p.115 / Chapter 4.4.4 --- Insights from isotherm study --- p.117 / Chapter 4.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.118 / Chapter 4.5.1 --- Effect of mix-cations --- p.118 / Chapter 4.5.2 --- Effect of mix-anions --- p.120 / Chapter 4.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.122 / Chapter 4.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.124 / Chapter 4.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.126 / Chapter 5. --- Conclusion --- p.131 / Chapter 6. --- Summary --- p.134 / Chapter 7. --- References --- p.134 / Chapter 8. --- Appendixes --- p.144
80

Integrated treatment of di(2-ethylhexyl)phthalate by biosorption and photocatalytic oxidation =: 以生物吸附作用及光催化降解作為鄰苯二甲酸二(2-乙基巳基)酯的綜合處理法. / 以生物吸附作用及光催化降解作為鄰苯二甲酸二(2-乙基巳基)酯的綜合處理法 / Integrated treatment of di(2-ethylhexyl)phthalate by biosorption and photocatalytic oxidation =: Yi sheng wu xi fu zuo yong ji guang cui hua xiang jie zuo wei lin ben er jia suan er(2--yi ji yi ji)zhi de zong he chu li fa. / Yi sheng wu xi fu zuo yong ji guang cui hua xiang jie zuo wei lin ben er jia suan er(2--yi ji yi ji)zhi de zong he chu li fa

January 2002 (has links)
by Chan Hiu-wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 123-133). / Text in English; abstracts in English and Chinese. / by Chan Hiu-wai. / Acknowledgements --- p.i / Abstract --- p.ii / List of Figures --- p.x / List of Tables --- p.xiii / List of Abbreviations --- p.xv / Page / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The chemical class: Phthalate esters --- p.1 / Chapter 1.2 --- Di(2-ethylhexyl)phthalate --- p.2 / Chapter 1.2.1 --- Characteristics of DEHP --- p.5 / Chapter 1.2.2 --- Production and applications --- p.5 / Chapter 1.2.3 --- Environmental releases and environmental fate --- p.8 / Chapter 1.2.4 --- Toxicity of DEHP --- p.8 / Chapter 1.2.4.1 --- Mammalian toxicity --- p.9 / Chapter 1.2.4.2 --- Toxicity to aquatic organisms --- p.10 / Chapter 1.2.5 --- Regulations --- p.10 / Chapter 1.3 --- Conventional technologies for DEHP removal --- p.11 / Chapter 1.3.1 --- Biodegradation --- p.11 / Chapter 1.3.2 --- Coagulation --- p.11 / Chapter 1.3.3 --- Adsorption --- p.11 / Chapter 1.4 --- Innovative technologies for DEHP removal --- p.12 / Chapter 1.4.1 --- Biosorption --- p.13 / Chapter 1.4.1.1 --- Definition of biosorption --- p.13 / Chapter 1.4.1.2 --- Mechanisms --- p.13 / Chapter 1.4.1.3 --- Selection of biosorbents --- p.17 / Chapter 1.4.1.4 --- Assessment of biosorption performance --- p.21 / Chapter a. --- Batch adsorption experiments --- p.21 / Chapter b. --- Modeling of biosorption --- p.21 / Chapter 1.4.1.5 --- Recovery of biosorbents --- p.23 / Chapter 1.4.1.6 --- Development of biosorption process --- p.23 / Chapter 1.4.1.7 --- Seaweeds as biosorbents --- p.24 / Chapter 1.4.2 --- Advanced oxidation processes --- p.27 / Chapter 1.4.3 --- Heterogeneous photocatalytic oxidation --- p.30 / Chapter 1.4.3.1 --- Photocatalyst --- p.30 / Chapter 1.4.3.2 --- General mechanisms --- p.31 / Chapter 1.4.3.3 --- Influencing parameters in PCO --- p.33 / Chapter 1.4.3.4 --- Enhanced performance by addition of hydrogen peroxide --- p.33 / Chapter 2 --- Objectives --- p.36 / Chapter 3 --- Materials and Methods --- p.38 / Chapter 3.1 --- Chemical reagents --- p.38 / Chapter 3.2 --- Biosorption of DEHP by seaweed biomass --- p.39 / Chapter 3.2.1 --- Biosorbents --- p.39 / Chapter 3.2.2 --- Determination method of DEHP --- p.39 / Chapter 3.2.3 --- Batch adsorption experiments --- p.44 / Chapter 3.2.3.1 --- Screening of potential biomass --- p.44 / Chapter 3.2.3.2 --- Characterization of beached seaweed and S. siliquastrum --- p.44 / Chapter a. --- Total organic carbon (TOC) content --- p.44 / Chapter b. --- Leaching of biomass components --- p.45 / Chapter 3.2.3.3 --- Combined effect of pH and biomass concentration --- p.45 / Chapter 3.2.3.4 --- Effect of retention time --- p.45 / Chapter 3.2.3.5 --- Effect of agitation rate --- p.45 / Chapter 3.2.3.6 --- Effect of temperature --- p.46 / Chapter 3.2.3.7 --- Effect of particle size --- p.46 / Chapter 3.2.3.8 --- Effect of DEHP concentration --- p.46 / Chapter 3.2.4 --- Recovery of adsorbed DEHP from seaweed biomass --- p.47 / Chapter 3.2.4.1 --- Screening for suitable desorbing agents --- p.47 / Chapter 3.2.4.2 --- Multiple adsorption-desorption cycles --- p.47 / Chapter 3.2.5 --- Statistical analysis --- p.43 / Chapter 3.3 --- Photocatalytic oxidation --- p.48 / Chapter 3.3.1 --- Photocatalytic reactor --- p.48 / Chapter 3.3.2 --- Optimization of reaction conditions --- p.48 / Chapter 3.3.2.1 --- Effect of reaction time --- p.48 / Chapter 3.3.2.2 --- Effect of initial pH --- p.51 / Chapter 3.3.2.3 --- Effect of Ti02 concentration --- p.51 / Chapter 3.3.2.4 --- Effect of UV intensity --- p.52 / Chapter 3.3.2.5 --- Effect of H202 concentration --- p.52 / Chapter 3.3.2.6 --- Effect of initial DEHP concentration and irradiation time --- p.52 / Chapter 3.3.2.7 --- Statistical analysis --- p.52 / Chapter 3.3.4 --- Determination of mineralization of DEHP by analyzing total Organic carbon (TOC) content --- p.53 / Chapter 3.3.5 --- Identification of intermediate products of DEHP --- p.53 / Chapter 3.3.6 --- Evaluation for the toxicity of DEHP and intermediate products --- p.53 / Chapter 3.3.6.1 --- Microtox® test --- p.53 / Chapter 3.3.6.2 --- Amphipod survival test --- p.55 / Chapter 3.4 --- Feasibility of combining biosorption and photocatalyic oxidation as an Integrated treatment for DEHP --- p.57 / Chapter 3.4.1 --- Effect of algal extract on photocatalytic oxidation of DEHP --- p.57 / Chapter 3.4.2 --- Determination of mineralization of algal extract by analyzing total organic carbon (TOC) --- p.57 / Chapter 4 --- Results --- p.58 / Chapter 4.1 --- Determination method of DEHP --- p.58 / Chapter 4.2 --- Biosorption --- p.58 / Chapter 4.2.1 --- Batch adsorption experiments --- p.58 / Chapter 4.2.1.1 --- Screening of potential biomass --- p.58 / Chapter 4.2.1.2 --- Characterization of beached seaweed and S. siliquastrum --- p.61 / Chapter a. --- Total organic carbon (TOC) content --- p.61 / Chapter b. --- Leaching properties --- p.61 / Chapter 4.2.1.3 --- Combined effect of pH and biomass concentration --- p.61 / Chapter 4.2.1.4 --- Effect of retention time --- p.74 / Chapter 4.2.1.5 --- Effect of agitation rate --- p.74 / Chapter 4.2.1.6 --- Effect of temperature --- p.74 / Chapter 4.2.1.7 --- Effect of particle size --- p.74 / Chapter 4.2.1.8 --- Effect of initial DEHP concentration: Modeling by Langmuir and Freundlich adsorptin isotherm --- p.79 / Chapter 4.2.2 --- Recovery of adsorbed DEHP by seaweed biomass --- p.84 / Chapter 4.2.2.1 --- Screening for suitable desorbing agents --- p.84 / Chapter 4.2.2.2 --- Multiple adsorption-desorption cycles --- p.84 / Chapter 4.3 --- Photocatalytic oxidation --- p.90 / Chapter 4.3.1 --- Optimization of reaction conditions --- p.90 / Chapter 4.3.1.1 --- Effect of reaction time --- p.90 / Chapter 4.3.1.2 --- Effect of initial pH --- p.90 / Chapter 4.3.1.3 --- Effect of TiO2 concentration --- p.90 / Chapter 4.3.1.4 --- Effect of UV intensity --- p.90 / Chapter 4.3.1.5 --- Effect of H2O2 concentration --- p.95 / Chapter 4.3.1.6 --- Effect of initial DEHP and irradiation time --- p.95 / Chapter 4.3.2 --- Determination of mineralization of DEHP by analyzing total organic carbon (TOC) --- p.95 / Chapter 4.3.3 --- Identification of intermediate products of DEHP --- p.95 / Chapter 4.3.4 --- Evaluation for the toxicity of DEHP and the intermediate products --- p.102 / Chapter 4.3.4.1 --- Microtox® test --- p.102 / Chapter 4.3.4.2 --- Amphipod survival test --- p.102 / Chapter 4.4 --- Feasibility of combining biosorption and photocatalytic oxidation as an integrated treatment for DEHP --- p.102 / Chapter 4.4.1 --- Effect of algal extract on photocatalytic oxidation of DEHP --- p.102 / Chapter 4.4.2 --- Determination of mineralization of algal extract by analyzing total organic carbon (TOC) --- p.103 / Chapter 5 --- Discussion --- p.108 / Chapter 5.1 --- Determination method of DEHP --- p.108 / Chapter 5.2 --- Biosorption --- p.108 / Chapter 5.2.1 --- Batch adsorption experiments --- p.108 / Chapter 5.2.1.1 --- Screening of potential biomass --- p.108 / Chapter 5.2.1.2 --- Characteristic of S. siliquastrum and beached seaweed --- p.109 / Chapter 5.2.1.3 --- Combined effect of pH and biomass concentration --- p.109 / Chapter 5.2.1.4 --- Effect of retention time --- p.111 / Chapter 5.2.1.5 --- Effect of agitation rate --- p.111 / Chapter 5.2.1.6 --- Effect of temperature --- p.111 / Chapter 5.2.1.7 --- Effect of particle size --- p.112 / Chapter 5.2.1.8 --- Effect of initial DEHP concentration: Modeling of Langmuir and Freundlich adsorption isotherms --- p.112 / Chapter 5.2.2 --- Recovery of adsorbed DEHP by seaweed biomass --- p.114 / Chapter 5.2.2.1 --- Screening for suitable desorbing agents --- p.114 / Chapter 5.2.2.2 --- Multiple adsorption-desorption cycles --- p.115 / Chapter 5.3 --- Photocatalytic oxidation --- p.115 / Chapter 5.3.1 --- Optimization of reaction conditions --- p.115 / Chapter 5.3.1.1 --- Effect of reaction time --- p.115 / Chapter 5.3.1.2 --- Effect of pH --- p.116 / Chapter 5.3.1.3 --- Effect of TiO2 concentration --- p.116 / Chapter 5.3.1.4 --- Effect of UV intensity --- p.116 / Chapter 5.3.1.5 --- Effect of H2O2 concentration --- p.117 / Chapter 5.3.1.6 --- Effect of DEHP concentration and irradiation time --- p.117 / Chapter 5.3.2 --- Determination of mineralization of DEHP by analyzing total organic carbon (TOC) --- p.117 / Chapter 5.3.3 --- Identification of intermediate products of DEHP --- p.118 / Chapter 5.3.4 --- Evaluation for the toxicity of DEHP and the intermediate products --- p.119 / Chapter 5.4 --- Feasibility of combining biosorption and photocatalytic oxidation as an integrated treatment for DEHP --- p.119 / Chapter 6 --- Conclusions --- p.121 / Chapter 7 --- References --- p.123

Page generated in 0.0697 seconds