21 |
Définition et mise en oeuvre d'un matériau composite à matrice métallique pour les packagings d'électronique embarquée / Definition and manufacturing of a metallic matrix composite for embedded electronics packagingPerron, Christophe 11 July 2017 (has links)
Les packagings d’électronique embarquée sont actuellement en alliages d’aluminium. A partir d’une étude de sélection des matériaux, complétée par une simulation numérique thermique,nous avons démontré qu’un matériau composite constitué d’une matrice aluminium et de fibres de carbone à forte conductivité thermique, représente un fort potentiel de gain de masse sur ces équipements. Cependant, le couplage de ces deux matériaux génère des problèmes d’élaboration en raison d’incompatibilités fortes parmi lesquelles un mouillage très faible du carbone par l’aluminium liquide et une réactivité chimique élevée qui conduit à la formation de carbures d’aluminium préjudiciables pour le matériau final. Deux voies d’élaboration distinctes ont été envisagées : Une voie liquide où l’utilisation d’un agent de mouillage (un sel fluoré) a permis d’obtenir la montée par capillarité du métal dans des mèches de fibres. Une voie solide basée sur une technique originale d’empilements de feuillets d’aluminium et de fibres de carbone avec le procédé de Spark Plasma Sintering (SPS). .La seconde technique s’est révélée prometteuse en permettant d’obtenir des échantillons multicouches sans porosités, un endommagement très limité des fibres et une architecture contrôlée.Notre étude a montré que la formation de carbures d’aluminium est limitée. De plus, une meilleure compréhension du SPS ou l’application d’un revêtement sur les fibres devraient permettre d’éviter la formation de ces carbures. Les tentatives de caractérisations mécanique et thermique effectuées sur ces échantillons donnent un premier aperçu de l’efficacité du renforcement de l’aluminium par les fibres de carbone. / Embedded electronic packagings are currently made of aluminum. A first study – basedupon a material selection method completed by numerical analysis – showed that a metal matrixcomposite made of aluminum and highly thermal conductive continuous carbon fibers represents ahigh potential upon weight savings for those equipments. Though, coupling these componentsrepresents numerous challenges due to their incompatibility such as a really low wetting of carbonliquidaluminum system and its unavoidable chemical reactivity that leads to the formation ofaluminum carbides that are harmful for the final material. Two manufacturing routes were considered: A liquid route using a wetting agent (fluorinated salts) led the metal to rise alongcarbon fibers by capillarity. A solid route based upon a novel technique of aluminum foils and carbon fibersstacking using the Spark Plasma Sintering (SPS) process.This second technique revealed to be very promising and allowed to obtain multilayer samples with noporosities, highly limited fiber damages and controlled composite architecture. Our study shows thataluminum carbides formation is limited. Moreover, a deeper comprehension of SPS process or thedeposit of fiber coatings would prevent this carbide formation. Attempts of mechanical and thermalcharacterization led upon such samples give a first overview of the efficiency of the aluminumreinforcement by carbon fibers.
|
22 |
Élaboration de carbure de silicium par Spark Plasma Sintering pour des applications en protection balistique / Development of silicon carbide by Spark Plasma Sintering for ballistic protectionDelobel, Florimond 28 November 2018 (has links)
Le développement de protections balistiques toujours plus légères et performantes reste un sujet de recherche très actif. Malgré de très hautes performances, la difficulté de mise en forme du SiC conduit généralement à l’utilisation d’aides au frittage en quantité importante, favorisant la formation de phases secondaires pouvant fragiliser le matériau. De plus, les hautes températures de mise en forme induisent la présence de phase α, conférant au matériau des propriétés mécaniques anisotropes et inférieures à celles de la phase cubique β.Dans ces travaux de thèse, l’objectif a été d’élaborer un matériau SiC cubique de très haute pureté, avec une densité de 100% et une stœchiométrie Si/C idéale afin d’optimiser les performances de cette céramique. Deux types de précurseurs ont été envisagés : une poudre commerciale et une poudre issue de la conversion d’un précurseur polymère précéramique.Dans un premier temps, une étude paramétrique de frittage par SPS a permis d’atteindre des densités de 95% pour les 2 précurseurs, tout en conservant la phase cubique seule. Ces résultats, bien qu’encourageants mais n’étant pas suffisants pour l’application visée, l’étude s’est tournée vers l’ajout d’aides au frittage. Des densités de 100% ont ainsi été obtenues sur des échantillons préparés à partir de poudre commerciale, même pour de très faibles teneurs en additif. Un second aspect de ces travaux a permis de mettre en évidence une dépendance de la température de transition β -> α du SiC vis-à-vis de la pression de frittage mais également vis-à-vis du type de précurseur, l’utilisation du précurseur polymère étant plus favorable à la stabilité de la structure cubique. Enfin des mesures de dureté ont été réalisées sur les meilleurs échantillons et ont permis de souligner le rôle prépondérant de la densité sur cette propriété. / The development of light and high performance ballistic protections is currently a sensitive subject of research. Despite promising mechanical characteristics, the complexity of SiC shaping generally leads to the use of high content of sintering aids, favouring secondary phases formation which could weaken the material. Nevertheless, high sintering temperatures induce the presence of the α form of SiC, conferring to the material anisotropical and lower mechanical properties than the one obtained with the cubic β phase.The goal of this PhD work is the development of high purity cubic SiC, with density close to 100% and perfect Si:C stoichiometry to optimize the performances of this ceramic. Two kinds of precursors were considered: a commercial powder and a powder from the conversion of preceramic polymer precursor.Firstly, the parametric study of SPS sintering allowed to reach densities of 95% for both precursors, while conserving only the cubic phase. These encouraging results being not sufficient, this study switched to the use of sintering aids. Densities close to 100% were thus reached on samples sintered with prepared mixtures from commercial powder, even for very low content of additive. The second subject of this thesis highlighted a dependence of the β -> α transition temperature of SiC as a function of sintering pressure, but also according to the kind of precursor. Indeed, the use of polymer precursor is favourable to cubic structure stability. Then, hardness measurements were performed on the most promising samples and allowed to highlight the major role of density on this property.
|
23 |
Nanostructured Bulk Thermoelectrics : Scalable Fabrication Routes, Processing and EvaluationYakhshi Tafti, Mohsen January 2016 (has links)
Current fossil fuel based energy sources have a huge shortcoming when one discusses their efficiency. The conversion efficiency of fossil fuel-based technologies is less than 40% in best cases. Therefore, until the renewable energy section is mature enough to handle all the energy demand one has to research and develop the technologies available to harvest the energy from the waste heat generated in fossil fuel-based supply sources. One of these emerging technologies is the use of thermoelectric (TE) devices to achieve this goal, which are solid-state devices capable of directly interconverting between heat and electrical energy. In the past decade there has been a significant scientific and financial investment within the field to enhance their properties and result in time/energy efficient fabrication processes of TE materials and devices for a more sustainable environment. In this thesis with use of chemical synthesis routes for nanostructured bulk thermoelectric materials iron antimonide (FeSb2), skutterudites (based on general formula of RzMxCo1-xSb3-yNy) and copper selenide (Cu2Se) are developed. These materials are promising candidates for use in thermoelectric generators (TEG) or for sensing applications. Using chemical synthesis routes such as chemical co-precipitation, salt melting in marginal solvents and thermolysis, fabrication of these TE materials with good performance can be performed with high degree of reproducibility, in a much shorter time, and easily scalable manner for industrial processes. The TE figure of merit ZT of these materials is comparable to, or better than their conventional method counterparts to ensure the applicability of these processes in industrial scale. Finally, through thorough investigation, optimized consolidation parameters were generated for compaction of each family of materials using Spark Plasma Sintering technique (SPS). As each family of TE nanomaterial investigated in this thesis had little to no prior consolidation literature available, specific parameters had to be studied and generated. The aim of studies on compaction parameters were to focus on preservation of the nanostructured features of the powder while reaching a high compaction density to have positive effects on the materials TE figure of merit. / Dagens fossilbränslebaserade energikällor har en enorm brist gällande effektivitet. Effektiviteten av fossilbränslebaserade teknologiers omvandling är mindre än 40 % i bästa fall. Därför tills förnybar energi är mogen nog att hantera alla energibehov, måste man forska och utveckla teknik för att skörda energi från spillvärme i fossilbränslebaserade försörjningskällor. En av dessa nya tekniker är tillämpning av termoelektriska (TE) material för att uppnå målet. Nämnde material är Soldi-State materialer som kan transformera mellan värme och elektrisk energi. Under det senaste decenniet har det pågått en stor vetenskaplig och ekonomisk investering inom området för att förbättra termoelektriska materials egenskaper. Dessutom ville man ta fram tid/energieffektiva TE material och komponenter för en mer hållbar miljö. I denna avhandling utvecklades och producerades termoelektriska material såsom järn antimonid (FeSb2), skutterudit (baserat på allmänna formeln RzMxCo1-xSb3-YNY) och koppar selenid (Cu2Se) med hjälp av kemiska syntesmetoder. Genom att Använda kemiska syntesmetoder som kemisk samutfällning, salt smältning i marginella lösningsmedel och termolys, kan material med hög grad av reproducerbarhet och ställbar för industriella processer tillverkas. Termoelektrisk omvandling effektivitet hos uppnådde material är betydligt högre än resultat av andra studier. I och med detta kan man säga att materialet kan användas inom industri. Slutligen, genom en grundlig undersökning optimerades packningsparametrar som genererades för packning av varje materialgrupp med hjälp av Spark Plasma Sintring teknik (SPS). Eftersom ingen relevant studie finns för varje grupp av termoelektriska nanomaterial som undersökts i denna avhandling, studerades och genererades dessa specifika parametrar. Syftet med studien är att fokusera på bevarande av nanostrukturerade egenskaperna hos pulvret och att samtidigt nå en hög packningstäthet för att ha positiva effekter på materialens termoelektriska omvandlingseffektivitet. / <p>QC 20160503</p> / NEXTEC / SCALTEG
|
24 |
Synthesis and characterization of nano-structured CoSb<sub>3</sub> thermoelectric materialKhan, Abdullah January 2009 (has links)
<p>In this project, nano powder of CoSb<sub>3</sub> thermoelectric material was synthesized using chemical alloying novel co-precipitation method. This method involved co-precipitation of TE precursor compounds in controlled pH aqueous solutions followed by thermo-chemical treatments including calcination and reduction to produce nano-particulates of CoSb<sub>3</sub>. The nano powder was consolidated using rapid solid state spark plasma sintering (SPS) and the processing time was of the order of few minutes. On a result very high densities were achieved and grain growth was almost negligible.</p><p>Various batches of the CoSb<sub>3</sub> nano powder were produced to achieve high purity, minimum particle size and compensate Sb evaporation during thermo-chemical reduction. For de-agglomeration, powder was grinded before and after calcination. Samples were characterized at each stage during synthesis using XRD and SEM (with EDX). Thermal gravimetric analysis (TGA) was done before thermochemical treatments to observe weight losses with heating the powder at high temperatures and other physiochemical changes. Thermal diffusivity of the samples was measured at room temperature using Laser Flash Apparatus (LFA) and heat capacity was measured using Differential Scanning Calorimetry (DSC). Thermal conductivities are calculated using these thermal diffusivities, heat capacities and densities of the sintered pellets. Average grain size is measure using image size J software.</p><p>It was observed that powder purity and size is affected by batch size, reduction conditions like holding temperature and time. During sintering with SPS; heating and cooling rates, sintering temperature, holding pressure and time were the main variables. Grain size and morphology was analyzed using SEM.</p><p>It was observed that larger the grain size higher will be the thermal diffusivity, which leads to increase in thermal conductivity. Hence, grain size has affected on thermal conductivity and also on TE performance.</p> / QC 20100708
|
25 |
Spark Plasma Sintering of Si<sub>3</sub>N<sub>4</sub>-based Ceramics : Sintering mechanism-Tailoring microstructure-Evaluationg propertiesPeng, Hong January 2004 (has links)
<p>Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si<sub>3</sub>N<sub>4</sub>-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology.</p><p> The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RE<sub>x</sub>Si<sub>12-(3x+n)</sub>Al<sub>3x+n</sub>O<sub>n</sub>N<sub>16-n</sub> while keeping the cation ratios of RE, Si and Al constant. </p><p>Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si<sub>3</sub>N<sub>4</sub>-based ceramics, have been precisely followed and separately investigated in the SPS process.</p><p>The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a <i>dynamic ripening</i> mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. </p><p>The obtained sialon ceramics with fine-grained microstructure show formidably improved <i>superplasticity</i> in the presence of an electric field. The compressive strain rate reaches the order of 10<sup>-2</sup> s<sup>-1</sup> at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming. </p>
|
26 |
Chalcogenide Glasses for Infrared Applications: New Synthesis Routes and Rare Earth DopingHubert, Mathieu January 2012 (has links)
Chalcogenide glasses and glass-ceramics present a high interest for the production of thermal imaging lenses transparent in the 3-5 μm and 8-12 μm windows. However, chalcogenide glasses are conventionally synthesized in sealed silica ampoules which have two major drawbacks. First, the low thermal conductivity of silica limits the sample dimensions and second the silica tubes employed are single use and expensive, and represent up to 30% of the final cost of the material. The present work therefore addresses the development of innovative synthesis methods for chalcogenide glass and glass-ceramics that can present an alternative to the silica tube route. The method investigated involves melting the raw starting elements in reusable silica containers. This method is suitable for the synthesis of stable chalcogenide glasses compositions such as GeSe₄ but uncontrolled crystallization and homogenization problems are experienced for less stable compositions. The second approach involves preparation of amorphous chalcogenide powders by ball milling of raw elements. This mechanosynthesis step is followed by consolidation of the resulting powders to produce bulk glasses. Hot Uniaxial Pressing is suitable for compositions stable against crystallization. However, uncontrolled crystallization occurs for the unstable 80GeSe₂-20Ga₂Se₃ glass composition. In contrast consolidation through Spark Plasma Sintering (SPS) allows production of bulk glasses in a short duration at relatively low temperatures and is appropriate for the synthesis of unstable glasses. A sintering stage of only 2 min at 390°C is shown to be sufficient to obtain infrared transparent 80GeSe₂-20Ga₂Se₃ bulk glasses. This method enables the production of lenses with a 4-fold increase in diameter in comparison to those obtained by melt/quenching technique. Moreover, increasing the SPS treatment duration yielded infrared transparent glass-ceramics with enhanced mechanical properties. This innovative synthesis method combining mechanosynthesis and SPS has been patented in the framework if this study. The controlled etching of 80GeSe₂-20Ga₂Se₃ glass-ceramics in acid solution yields nanoporous materials with enhanced surface area. The porous layer created on the surface of the glass-ceramic is shown to play the role of anti-reflection coating and increase the optical transmission in the infrared range by up to 10%. These materials may have potential for the production of sensors with increased sensitivity in the infrared. The influence of indium and lead addition on the thermal and optical properties of the 80GeSe₂-20Ga₂Se₃ glass has also been assessed. Increased In or Pb contents tend to decrease the Tg of the glasses and shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe₂-Ga₂Se₃-In₂Se₃ and GeSe₂-Ga₂Se₃-PbSe. No crystallization of the In₂Se₃ and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe₂-20Ga₂Se₃ glass-ceramics transparent in the infrared region up to 16 μm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.
|
27 |
Processing High Purity Zirconium Diboride Ultra-High Temperature Ceramics: Small-to-Large Scale ProcessingPham, David, Pham, David January 2016 (has links)
Next generation aerospace vehicles require thermal protection system (TPS) materials that are capable of withstanding the extreme aerothermal environment during hypersonic flight (>Mach 5 [>1700 m/s]). Ultra-high temperature ceramics (UHTC) such as zirconium diboride (ZrB₂) are candidate TPS materials due to their high-temperature thermal and mechanical properties and are often the basis for advanced composites for enhanced oxidation resistance. However, ZrB₂ matrix impurities in the form of boron trioxide (B₂O₃) and zirconium dioxide (ZrO₂) limit the high-temperature capabilities. Electric based sintering techniques, such as spark plasma sintering (SPS), that use joule heating have become the preferred densification method to process advanced ceramics due to its ability to produce high density parts with reduced densification times and limit grain growth. This study focuses on a combined experimental and thermodynamic assisted processing approach to enhance powder purity through a carbo- and borocarbo-thermal reduction of oxides using carbon (C) and boron carbide (B₄C). The amount of oxides on the powder surface are measured, the amount of additive required to remove oxides is calculated, and processing conditions (temperature, pressure, environment) are controlled to promote favorable thermodynamic reactions both during thermal processing in a tube furnace and SPS. Untreated ZrB₂ contains 0.18 wt%O after SPS. Additions of 0.75 wt%C is found to reduce powder surface oxides to 0.12 wt%O. A preliminary Zr-C-O computational thermodynamic model shows limited efficiency of carbon additions to completely remove oxygen due to the solubility of oxygen in zirconium carbide (ZrC) forming a zirconium oxycarbide (ZrCₓOᵧ). Scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with atomic scale elemental spectroscopy shows reduced oxygen content with amorphous Zr-B oxides and discreet ZrO₂ particle impurities in the microstructure. Processing ZrB₂ with minimal additions of B₄C (0.25 wt%) produces high purity parts after SPS with only 0.06 wt%O. STEM identifies unique “trash collector” oxides composed of manufacturer powder impurities of calcium, silver, and yttrium. A preliminary Zr-B-C-O thermodynamic model is used to show the potential reaction paths using B₄C that promotes oxide removal to produce high-purity ZrB₂ with fine grains (3.3 𝜇m) and superior mechanical properties (flexural strength of 660MPa) than the current state-of-the-art ZrB₂ ceramics. Due to the desirable properties produced using SPS, there is growing interest to advance processing techniques from lab-scale (20 mm discs) to large-scale (>100 mm). The advancement of SPS technologies has been stunted due to the limited power and load delivery of lab-scale furnaces. We use a large scale direct current sintering furnace (DCS) to address the challenges of producing industrially relevant sized parts. However, current-assisted sintering techniques, like SPS and DCS, are highly dependent on tooling resistances and the electrical conductivity of the sample, which influences the part uniformity through localized heating spots that are strongly dependent on the current flow path. We develop a coupled thermal-electrical finite element analysis model to investigate the development and effects of tooling and current density manipulation on an electrical conductor (ZrB₂) and an electrical insulator, silicon nitride (Si₃N₄), at the steady-state where material properties, temperature gradients and current/voltage input are constant. The model is built based on experimentally measured temperature gradients in the tooling for 20 mm discs and validated by producing 30 mm discs with similar temperature gradients and grain size uniformity across the part. The model aids in developing tooling to manipulate localize current density in specific regions to produce uniform 100 mm discs of ZrB₂ and Si₃N₄.
|
28 |
Nano and Grain-Orientated Ferroelectric Ceramics Produced by SPSLiu, Jing January 2007 (has links)
<p>Nano-powders of BaTiO<sub>3</sub>, SrTiO<sub>3</sub>, Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub>, a mixture of the composition (BaTiO<sub>3</sub>)<sub>0.6</sub>(SrTiO<sub>3</sub>)<sub>0.4</sub> with particle sizes in the range of 60 to 80 nm, and Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> with an average particle size of 100 nm were consolidated by spark plasma sintering (SPS). The kinetics of reaction, densification and grain growth were studied. An experimental procedure is outlined that allows the determination of a “kinetic window” within which dense nano-sized compacts can be prepared. It is shown that the sintering behaviour of the five powders varies somewhat, but is generally speaking fairly similar. However, the types of grain growth behaviour of these powders are quite different, exemplified by the observation that the kinetic window for the (BaTiO<sub>3</sub>)<sub>0.6</sub>(SrTiO<sub>3</sub>)<sub>0.4</sub> mixture is 125 <sup>o</sup>C, ~75 <sup>o</sup>C for Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, ~25<sup>o</sup>C for BaTiO<sub>3</sub> and SrTiO<sub>3</sub>, while it is hard to observe an apparent kinetic window for obtaining nano-sized compacts of Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub>. During the densification of the (BaTiO<sub>3</sub>)<sub>0.6</sub>(SrTiO<sub>3</sub>)<sub>0.4</sub> mixture the reaction 0.6BaTiO<sub>3</sub>+0.4SrTiO<sub>3</sub> → Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub> takes place, and this reaction is suggested to have a self-pinning effect on the grain growth, which in turn explains why this powder has a large kinetic window. Notably, SPS offers a unique opportunity to more preciously investigate and monitor the sintering kinetics of nano-powders, and it allows preparation of ceramics with tailored microstructures.</p><p>The dielectric properties of selected samples of (Ba, Sr)TiO<sub>3</sub> ceramics have been studied. The results are correlated with the microstructural features of these samples, <i>e.g.</i> to the grain sizes present in the compacts. The ceramic with nano-sized microstructure exhibits a diffuse transition in permittivity and reduced dielectric losses in the vicinity of the Curie temperature, whereas the more coarse-grained compacts exhibit normal dielectric properties in the ferroelectric region.</p><p>The morphology evolution, with increasing sintering temperature, of bismuth layer-structured ferroelectric ceramics such as Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (BIT) and CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> (CBNO) was investigated. The subsequent isothermal sintering experiments revealed that the nano-sized particles of the BIT precursor powder grew into elongated plate-like grains within a few minutes, via a dynamic ripening mechanism.</p><p>A new processing strategy for obtaining highly textured ceramics is described. It is based on a<i> directional dynamic ripening mechanism</i> <i>induced by superplastic deformation</i>. The new strategy makes it possible to produce a <i>textured</i> microstructure within minutes, and it allows production of textured ferroelectric ceramics with tailored morphology and improved physical properties.</p><p>The ferroelectric, dielectric, and piezoelectric properties of the textured bismuth layer-structured ferroelectric ceramics have been studied, and it was revealed that all textured samples exhibited anisotropic properties and improved performance. The highly textured Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> ceramic exhibited ferroelectric properties equal to or better than those of corresponding single crystals, and much better than those previously reported for grain-orientated Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> ceramics. Textured CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> ceramics exhibited a very high Curie temperature, <i>d</i><i>33</i>-values nearly three times larger than those of conventionally sintered materials, and a high thermal depoling temperature indicating that it is a very promising material for high-temperature piezoelectric applications.</p>
|
29 |
Spark Plasma Sintering of Si3N4-based Ceramics : Sintering mechanism-Tailoring microstructure-Evaluationg propertiesPeng, Hong January 2004 (has links)
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.
|
30 |
Nano and Grain-Orientated Ferroelectric Ceramics Produced by SPSLiu, Jing January 2007 (has links)
Nano-powders of BaTiO3, SrTiO3, Ba0.6Sr0.4TiO3, a mixture of the composition (BaTiO3)0.6(SrTiO3)0.4 with particle sizes in the range of 60 to 80 nm, and Bi4Ti3O12 with an average particle size of 100 nm were consolidated by spark plasma sintering (SPS). The kinetics of reaction, densification and grain growth were studied. An experimental procedure is outlined that allows the determination of a “kinetic window” within which dense nano-sized compacts can be prepared. It is shown that the sintering behaviour of the five powders varies somewhat, but is generally speaking fairly similar. However, the types of grain growth behaviour of these powders are quite different, exemplified by the observation that the kinetic window for the (BaTiO3)0.6(SrTiO3)0.4 mixture is 125 oC, ~75 oC for Bi4Ti3O12, ~25oC for BaTiO3 and SrTiO3, while it is hard to observe an apparent kinetic window for obtaining nano-sized compacts of Ba0.6Sr0.4TiO3. During the densification of the (BaTiO3)0.6(SrTiO3)0.4 mixture the reaction 0.6BaTiO3+0.4SrTiO3 → Ba0.6Sr0.4TiO3 takes place, and this reaction is suggested to have a self-pinning effect on the grain growth, which in turn explains why this powder has a large kinetic window. Notably, SPS offers a unique opportunity to more preciously investigate and monitor the sintering kinetics of nano-powders, and it allows preparation of ceramics with tailored microstructures. The dielectric properties of selected samples of (Ba, Sr)TiO3 ceramics have been studied. The results are correlated with the microstructural features of these samples, e.g. to the grain sizes present in the compacts. The ceramic with nano-sized microstructure exhibits a diffuse transition in permittivity and reduced dielectric losses in the vicinity of the Curie temperature, whereas the more coarse-grained compacts exhibit normal dielectric properties in the ferroelectric region. The morphology evolution, with increasing sintering temperature, of bismuth layer-structured ferroelectric ceramics such as Bi4Ti3O12 (BIT) and CaBi2Nb2O9 (CBNO) was investigated. The subsequent isothermal sintering experiments revealed that the nano-sized particles of the BIT precursor powder grew into elongated plate-like grains within a few minutes, via a dynamic ripening mechanism. A new processing strategy for obtaining highly textured ceramics is described. It is based on a directional dynamic ripening mechanism induced by superplastic deformation. The new strategy makes it possible to produce a textured microstructure within minutes, and it allows production of textured ferroelectric ceramics with tailored morphology and improved physical properties. The ferroelectric, dielectric, and piezoelectric properties of the textured bismuth layer-structured ferroelectric ceramics have been studied, and it was revealed that all textured samples exhibited anisotropic properties and improved performance. The highly textured Bi4Ti3O12 ceramic exhibited ferroelectric properties equal to or better than those of corresponding single crystals, and much better than those previously reported for grain-orientated Bi4Ti3O12 ceramics. Textured CaBi2Nb2O9 ceramics exhibited a very high Curie temperature, d33-values nearly three times larger than those of conventionally sintered materials, and a high thermal depoling temperature indicating that it is a very promising material for high-temperature piezoelectric applications.
|
Page generated in 0.1398 seconds