41 |
Fabrication and Characterization of Bulk Nanostructured Cobalt Antimonide based Skutterudites Materials for Thermoelectric Applications.Hossain, Mohammed Amin January 2015 (has links)
The increasing price of oil, global warming and rapid industrial growth has drawn much attention to renewable energy technologies over the last few decades. The total energy consumption is estimated to increase 1.4% per year globally. About 90% of this energy supply is generated through fossil fuel combustion with a typical efficiency of 30-40%. The remaining 60-70% of the energy is lost to the environment via automotive exhaust or industrial processes. It is highly desired to retrieve wasted heat to improve the overall efficiency of the energy conversion. Developing thermoelectric materials and devices is a potential solution to utilize waste heat as an energy source. Skutterudites are known to be promising thermoelectric materials in the temperature range 600K to 900K. Novel nanoengineering approaches and filling of skutterudites structure can further improve the transport properties of the material. In this work, Cobalt Antimonide (Co4Sb12) based skutterudites were fabricated via mechanical milling and alloying. Rear earth material Ytterbium and Cerium are used as fillers to substitute the cages in the crystal lattice of these materials. Base material is synthesized via thermochemical reduction of the precursors under hydrogen. Further processing of the material is performed with ball milling and Spark Plasma Sintering (SPS). Ball milling parameters were optimized for nanostructuring of Co4Sb12. Grain size was significantly reduced after SPS compaction. Finally, Thermoelectric transport properties of the material is evaluated over the temperature range 300K to 900K for five different composition of the skutterudites materials. Significant reduction in materials thermal conductivity was achieved through nanostructuring.
|
42 |
Mapping and analysis of the steel matrix across the Steel/WC- CompositeVijayakumar Sujaya, Jairam January 2014 (has links)
No description available.
|
43 |
MECHANISTIC UNDERSTANDING OF PHASE STABILITY, TRANSFORMATION, AND STRENGTHENING MECHANISMS IN LIGHTWEIGHT HIGH ENTROPY ALLOYS AND HIGH ENTROPY CERAMICSWalunj, Ganesh Shankar 01 September 2022 (has links)
No description available.
|
44 |
Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sinteringIrshad, H.M., Ahmed, B.A., Ehsan, M.A., Khan, Tahir I., Laoui, T., Yousaf, M.R., Ibrahim, A., Hakeem, A.S. 27 May 2017 (has links)
Yes / Alumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa.
|
45 |
Biocompatibility evaluation of sintered biomedical Ti-24Nb-4Zr-8Sn (Ti2448) alloy produced using spark plasma sintering (SPS).Madonsela, Jerman S. January 2018 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering Technology), Vaal University of Technology. / Solid titanium (Ti), Ti-6Al-4V (wt.%), and Ti-24Nb-4Zr-8Sn (wt.%) materials were fabricated from powders using spark plasma sintering (SPS). The starting materials comprised of elemental powders of ASTM Grade 4 titanium (Ti), aluminium (Al), vanadium (V), niobium (Nb), zirconium (Zr), and tin (Sn). The powders were initially characterised and milled prior to sintering. The micronpowders were milled in an attempt to produce materials with nanostructured grains and as a result improved hardness and wear resistance.
The produced solid Ti-24Nb-4Zr-8Sn alloy was compared to solid titanium (Ti) and Ti-6Al-4V (Ti64) on the basis of density, microstructure, hardness, corrosion, and biocompatibility. Relative densities above 99.0% were achieved for all three systems. CP-Ti and Ti64 had both 100% relative density, and Ti2448 showed a slightly lower density of 99.8%. Corrosion results showed that all three materials exhibited good corrosion resistance due to the formation of a protective passive film. In 0.9% NaCl Ti2448 had the highest current density (9.05 nA/cm2), implying that its corrosion resistance is relatively poor in comparison to Ti (6.41 nA/cm2) and Ti64 (5.43 nA/cm2), respectively. The same behavior was observed in Hank's solution. In cell culture medium, Ti2448 showed better corrosion resistance with the lowest current density of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. However, the current densities observed are quite low and insignificant that they lie within acceptable ranges for Ti2448 to be qualified as a biomaterial.
Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium showed better cell attachment and proliferation under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448.
|
46 |
Synthesis and characterization of nano-structured CoSb3 thermoelectric materialKhan, Abdullah January 2009 (has links)
In this project, nano powder of CoSb3 thermoelectric material was synthesized using chemical alloying novel co-precipitation method. This method involved co-precipitation of TE precursor compounds in controlled pH aqueous solutions followed by thermo-chemical treatments including calcination and reduction to produce nano-particulates of CoSb3. The nano powder was consolidated using rapid solid state spark plasma sintering (SPS) and the processing time was of the order of few minutes. On a result very high densities were achieved and grain growth was almost negligible. Various batches of the CoSb3 nano powder were produced to achieve high purity, minimum particle size and compensate Sb evaporation during thermo-chemical reduction. For de-agglomeration, powder was grinded before and after calcination. Samples were characterized at each stage during synthesis using XRD and SEM (with EDX). Thermal gravimetric analysis (TGA) was done before thermochemical treatments to observe weight losses with heating the powder at high temperatures and other physiochemical changes. Thermal diffusivity of the samples was measured at room temperature using Laser Flash Apparatus (LFA) and heat capacity was measured using Differential Scanning Calorimetry (DSC). Thermal conductivities are calculated using these thermal diffusivities, heat capacities and densities of the sintered pellets. Average grain size is measure using image size J software. It was observed that powder purity and size is affected by batch size, reduction conditions like holding temperature and time. During sintering with SPS; heating and cooling rates, sintering temperature, holding pressure and time were the main variables. Grain size and morphology was analyzed using SEM. It was observed that larger the grain size higher will be the thermal diffusivity, which leads to increase in thermal conductivity. Hence, grain size has affected on thermal conductivity and also on TE performance. / QC 20100708
|
47 |
Studies on Sintering Silicon Carbide-Nanostructured Ferritic Alloy Composites for Nuclear ApplicationsHu, Zhihao 22 July 2016 (has links)
Nanostructured ferritic alloy and silicon carbide composite materials (NFA-SiC) were sintered with spark plasma sintering (SPS) method and systematically investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as density and Vickers hardness tests. Pure NFA, pure SiC, and their composites NFA-SiC with different compositions (2.5 vol% NFA-97.5 vol% SiC, 5 vol% NFA-95 vol% SiC, 97.5 vol% NFA-2.5 vol% SiC, and 95 vol% NFA-5 vol% SiC) were successfully sintered through SPS.
In the high-NFA samples, pure NFA and NFA-SiC, minor gamma-Fe phase formation from the main alfa-Fe matrix occurred in pure NFA 950 degree C and 1000 degree C. The densities of the pure NFA and NFA-SiC composites increased with sintering temperature but decreased with SiC content. The Vickers hardness of the pure NFA and NFA-SiC composites was related to density and phase composition. In the high-SiC samples, NFA addition of 2.5 vol% can achieve full densification for the NFA-SiC samples at relative low temperatures. With the increase in sintering temperature, the Vickers hardness of the pure SiC and NFA-SiC composite samples were enhanced. However, the NFA-SiC composites had relative lower hardness than the pure SiC samples. A carbon layer was introduced in the NFA particles to prevent the reaction between NFA and SiC. Results indicated that the carbon layer was effective up to 1050 degree C sintering temperature. Green samples of gradient-structured NFA-SiC composites were successfully fabricated through slip casting of an NFA-SiC co-suspension. / Master of Science
|
48 |
Development of new high performance Titanium alloys with Fe-addition for dental implantsMohan, Prakash 13 July 2020 (has links)
[EN] Ti and its alloys are mostly used biomaterials due to its unique properties like (high
corrosion resistance, low elastic modulus, high mechanical strength/ density and
good biocompatibility). Ti β alloys based on the Ti-Mo alloy system shows unique
properties to employ as biomaterials. Tiβ alloys have lower Young Modulus,
shielding stress and lower bone reabsorption. This research aims to develop a new
biomaterial for a dental implant.
This research evaluates the addition of Zr and a small amount of Fe on the β-phase
stability and the mechanical properties of Ti-Mo alloy to be employed for the
medical applications. These alloys had been produced using two powder metallurgy
(PM) techniques; first technique is elemental blending (EB) which had been selected
because it enhanced the surface contact between the alloying element and Titanium
(Ti) with a cost-effective route. The behavior of different Ti alloys composition was
evaluated using this technique. Samples were uniaxial pressed at 600 MPa and
sintered at 1250ºC. Second technique evaluated in this study was Mechanical
alloying (MA). This technique has higher mixing energy than elemental blend which
improves mechanical contact between different particles, and it helps diffusion
during the sintering process. Samples were pressed at 600 MPa initially, and after
evaluating mechanical properties, compaction pressure is changed to 900 MPa for a
high green density of powders.
Different mechanical tests and microstructural studies were performed for elemental
blend (EB) samples and for mechanical alloying samples to ensure the properties
suitable for biomedical applications. Different tests for MA are Fluidity test (suitable
to know about the flow of the powder after milling cycle) and Granulometric
Analysis (test is suitable for powder distribution analysis). Other tests are common
like Archimedes test which is suitable for calculating the porosity of the sintered
samples, Three-point bending test is suitable for knowing Bending strength of the
sintered samples and to know energy conserved by the breaking samples, Ultrasonic test performed for knowing elastic modulus of the alloys, Hardness test performed
for calculating the Vicker´s hardness of the alloy, SEM analysis performed to know
about microstructure and EDX analysis(by which proper mixing of the alloying
element with the central element would be known). EBSD (Electron Beam Scattered
Diffraction) is also performed for more analysis about microstructure, grain size,
mixing of different elements in alloys. EBSD is an excellent tool for microanalysis
of the material.
From the results section, Green density of the alloy, fluidity of the milled powder,
Granulometry of the powder, sintered density of the alloy (From Archimedes test),
bending strength and bending modulus of the alloy, Elastic modulus by Ultrasonic
test, Microstructure of the alloy(By SEM and EBSD Analysis of the sintered part.)
are determined. Green density for elemental blend alloys is in the range of (77.42-
78.11%) and for Mechanical alloying samples were (74.94-78.58%). Sintered
density obtained by Archimedes' test for the elemental blend is in the range of (96.88-
98.74%). Bending strength obtained from three-point bending test is in range of
(666-2161 MPa), and mechanical alloying is in range of (371-1597 MPa). From the
high test, Determined Elastic modulus of the alloy is in range of (95.5-103 GPa) and
for Mechanical Alloying elastic modulus was in the range of (66-82 GPa), which
would be more suitable for biomedical applications. (From the SEM and EBSD
analysis Mechanical alloying are more homogeneous mixing in comparison to
Elemental Blend.
Green density (just after compaction) for the elemental blend is more than
mechanical alloying so that Sintered Density for Elemental Blend is more than
Mechanical Alloying. Due to higher sintered density, porosity is more in case of the
elemental blend. Also, due to higher porosity, bending strength is low in case of
mechanical alloying with same sintering parameters as Elemental blend alloys.
Micro-Hardness value is more in case of elemental blend in comparison to
Mechanical Alloying. Elastic modulus is more in case of elemental blend in
comparison to mechanical alloying; lower elastic modulus is more suitable for
biomedical applications. Grains are more regular and smaller in case of Mechanical
alloying which is due to a more homogeneous distribution of the elements in
comparison to elemental blend.
Powder processing technique is changed from Elemental Blend to Mechanical
Alloying due to the improvement of homogeneity of green powders. Mechanical
Alloying produced more homogeneous mixture due to high-speed milling with
higher Ball to powder ratio (which generates higher energy within the jars and breaks
the powders into smaller particles). Different combination of milling speed and
milling time performed for our results and the effects of a combination of different
parameters observed. / [ES] El titanio y sus aleaciones son los biomateriales principalmente usados debido a sus
propiedades únicas como alta resistencia a la corrosión, bajo módulo de elasticidad,
alta resistencia mecánica/densidad y buena biocompatibilidad. Las aleaciones Tiβ
basadas en el sistema de aleación Ti-Mo muestran propiedades únicas para
emplearse como biomateriales. Las aleaciones de Tiβ tienen un módulo de Young
más bajo, menor apantallamiento de tensiones y menor reabsorción ósea. Esta
investigación tiene como objetivo desarrollar un nuevo material biológico para un
implante dental.
Esta investigación evalúa la adición de Zr y una pequeña cantidad de Fe sobre la
estabilidad de fase β y las propiedades mecánicas de la aleación de Ti-Mo que se
utilizará para las aplicaciones médicas. Estas aleaciones se han producido utilizando
dos técnicas de pulvimetalurgia (PM); La primera técnica es la combinación de
polvos elementales (EB) que se ha seleccionado porque mejora el contacto
superficial entre el elemento de aleación y el titanio (Ti) con una ruta rentable. El
comportamiento de diferentes composiciones de aleaciones de Ti se evaluó
utilizando esta técnica. Las muestras se prensaron uniaxialmente a 600 MPa y se
sinterizaron a 1250ºC. La segunda técnica evaluada en este estudio fue la aleación
mecánica (MA). Esta técnica tiene una mayor energía de mezcla que la mezcla
elemental, lo que mejora el contacto mecánico entre las diferentes partículas y ayuda
a la difusión durante el proceso de sinterización. Las muestras se prensaron,
igualmente, a 600 MPa inicialmente, y después de evaluar las propiedades
mecánicas, la presión de compactación se aumentó a 900 MPa para una mayor
densidad en verde de los polvos.
Se realizaron diferentes pruebas mecánicas y estudios microestructurales para las
muestras de mezcla elemental (EB) y las muestras de aleación mecánica (MA) para
garantizar las propiedades adecuadas para aplicaciones biomédicas. Las diferentes pruebas para MA han sido la fluidez, adecuada para conocer el flujo del polvo
después del ciclo de molienda, y el análisis granulométrico, adecuado para el análisis
de la distribución del tamaño de los polvos. Otras pruebas comunes como la
determinación de la densidad por el método de Arquímedes, adecuada para calcular
la porosidad de las muestras sinterizadas, el ensayo de flexión a tres puntos para
conocer las propiedades mecánicas de las muestras sinterizadas y conocer la energía
conservada por las muestras a rotura, y la dureza Vickers de las aleaciones. Mediante
ultrasonidos se ha determinado el módulo elástico de las aleaciones. El análisis
microestructural se ha realizado mediante microscopía electrónica de barrido y
análisis por energías dispersivas de rayos X mediante los que se ha determinado la
homogeneidad química de las aleaciones. La difracción de electrones
retrodispersados (EBSD) ha permitido obtener la orientación cristalina de cada grano
y su tamaño, pues resulta una excelente herramienta para el microanálisis del
material.
La densidad en verde para aleaciones de mezcla elemental está en el rango del 77.42-
78.11% y para las muestras de aleación mecánica se han obtenido densidades
relativas del 74.94-78.58%. La densidad de los sinterizados, obtenida por el método
de Arquímedes, está en el rango del 96.88-98.74%, para la mezcla elemental de
polvos. La resistencia a la flexión obtenida a partir de la prueba de flexión a tres
puntos está en un amplio rango de 666 a 2161 GPa, mientras que para los polvos de
aleación mecánica se encuentra en el rango de los 371 a 1597 GPa. El módulo
elástico determinado en las aleaciones obtenidas con polvos de mezcla elemental
está en el rango de los 95.5 a los 103 GPa, mientras que, en las obtenidas con los
polvos mezclados mecánicamente, su módulo elástico oscila entre los 66 y los 82
GPa, que sería más adecuado para un menor apantallamiento de tensiones. La
microestructura de las muestras procesadas con polvos elementales con polvos
mezclados mecánicamente, presentan diferencias sustanciales con un afinamiento
del tamaño de grano con los polvos mezclados mecánicamente, aunque aparecen
claramente diferenciadas dos fases distintas y una mayor proporción de fase .
Debido a la menor densidad de las muestras procesadas con los polvos mezclados
mecánicamente, estas presentan una menor resistencia mecánica y a su vez una
menor plasticidad. Por ello se opta por utilizar técnicas de sinterización de alta
densificación como el Spark Plasma Sinterirng (SPS) a pesar de lo cual no obtenemos mejora en el comportamiento mecánico de las mismas. Sin embargo, en
los ensayos de corrosión y liberación de iones si se ha encontrado una sustancial
mejor en las muestras obtenidas por SPS. / [CA] El titani i els seus aliatges són utilitzats, principalment, com a biomaterials per les
seves propietats úniques com alta resistència a la corrosió, baix mòdul d'elasticitat,
alta resistència mecànica específica i bona biocompatibilitat. Els aliatges β Ti
basades en el sistema d'aliatge Ti-Mo mostren propietats úniques per a emprar-se
com biomaterials. Els aliatges de β Ti tenen un mòdul de Young més baix, menor
apantallament de tensions i menor reabsorció òssia. Aquesta investigació té com a
objectiu desenvolupar un nou material biocompatible per a la seva aplicació com a
implants dentals.
Aquesta investigació avalua l'addició de Zr i petites quantitats de Fe sobre l'estabilitat
de la fase β i les propietats mecàniques dels aliatges Ti-Mo que s'utilitzaran per a
aplicacions biomèdiques. Aquests aliatges s'han produït utilitzant dues tècniques
pulvimetalúrgiques (PM); La primera tècnica és la mescla elemental de pols (EB)
que s'ha seleccionat perquè millora el contacte superficial entre l'element d'aliatge i
el titani (Ti) amb una ruta rendible. El comportament de diferents composicions
d'aliatges de Ti s'ha avaluat utilitzant aquesta tècnica. Les mostres es van premsar
uniaxialment a 600 MPa i es sinteritzaren a 1250ºC. La segona tècnica avaluada en
aquest estudi va ser l'aliatge mecànica (MA). Aquesta tècnica té una major energia
de mescla que la mescla elemental, el que millora el contacte mecànic entre les
diferents partícules i ajuda a la difusió durant el procés de sinterització. Les mostres
es van premsar a 600 MPa inicialment, i després d'avaluar les propietats mecàniques,
la pressió de compactació es va augmentar a 900 MPa per a una major densitat en
verd de les pols.
Es van realitzar diferents proves mecàniques i estudis microestructurals per a mostres
de mescla elemental (EB) i per a mostres d'aliatge mecànica per garantir les
propietats adequades per a aplicacions biomèdiques. Les diferents proves per MA
són la prova de fluïdesa (adequada per conèixer el flux de la pols després del cicle
d'aliatge mecànica) i l'anàlisi granulomètric (la prova és adequada per a l'anàlisi de
distribució de la mida de les pols). S'han realitzat altres proves comunes com la prova
d'Arquímedes, adequada per a calcular la porositat de les mostres sinteritzades. La prova de flexió de tres punts és adequada per conèixer la resistència a la flexió de les
mostres sinteritzades i conèixer l'energia conservada per les mostres durant el seu
trencament. Mitjançant ultrasons s'ha determinat el mòdul elàstic dels aliatges i la
duresa s'ha realitzat per calcular la duresa Vickers de l'aliatge. S'ha realitzat l'anàlisi
per SEM per conèixer la microestructura i l'anàlisi per EDX (mitjançant el qual es
coneixeria la mescla adequada de l'element d'aliatge amb l'element central). EBSD
(difracció d'electrons retro dispersats) també es realitza per a un més complet anàlisi
sobre la microestructura, orientacions cristal·lines, mida de gra, mescla de diferents
elements en els aliatges. EBSD és una excel·lent eina per al microanàlisi del material.
De la secció de resultats es determinen la densitat en verd de l'aliatge, fluïdesa de la
pols mòlta, granulometria de la pols, densitat de l'aliatge sinteritzada (prova
d'Arquímedes), resistència a la flexió i mòdul a flexió de l'aliatge, mòdul elàstic per
ultrasons, microestructura de l'aliatge (per SEM i EBSD). La densitat en verd per als
aliatges de mescla elemental està en el rang dels 77.42-78.11%, mentre que per a les
mostres d'aliatge mecànica van ser d'un 74.94-78.58%. La densitat dels sinteritzats,
obtinguda pel mètode d'Arquímedes, està en el rang dels 96.88-98.74%, per la
mescla elemental de pols. La resistència a la flexió obtinguda a partir de la prova de
flexió de tres punts es troba en el rang dels 666-2161 MPa, mentre que per a les
mostres de aliat mecànic el seu rang és molt ampli, des dels 371 als 1597 MPa. A
partir de l'assaig d'ultrasons, el mòdul elàstic determinat per als aliatges de mescla
elemental està en el rang de 95.5 a 103 GPa i per a les sinteritzades amb pols aliats
mecànicament, es troba en el rang dels 66-82 GPa, que seria més adequat per a
aplicacions biomèdiques. A partir de les anàlisis per SEM i EBSD, es confirma que
l'aliatge mecànica és una mescla més homogènia en comparació amb la mescla
elemental dels pols.
La densitat en verd (just després de la compactació) per a la mescla elemental és més
gran que en l'aliatge mecànica, de manera que la densitat sinteritzada per a la mescla
elemental és major igualment que en l'aliatge mecànica. A causa d'una major densitat
dels sinteritzats, la porositat és menor en el cas de la mescla elemental. A més, a
causa d'una major porositat, la resistència a la flexió és baixa en cas d'aliatge
mecànica amb els mateixos paràmetres de sinterització que els aliatges de mescla
elemental. El valor de microduresa és major en el cas de la mescla elemental en comparació amb l'aliatge mecànica. El mòdul elàstic també resulta més gran en el
cas d'una mescla elemental comparat amb l'aliatge mecànica, que en aquest cas
resultaria més adequat per a aplicacions biomèdiques. Els grans són més regulars i
més petits en el cas de l'aliatge mecànica, a causa d'una distribució més homogènia
dels elements en comparació amb la mescla elemental i als efectes de
recristal·lització durant la sinterització.
L'aliatge mecànica va produir una mescla més homogènia dels elements d'aliatge, a
causa de la mòlta a alta velocitat amb una relació boles/pols més alta que genera una
major energia dins de les gerres i obté partícules de pols més petites. S'ha realitzat
una combinació de diferents velocitats i temps de mòlta, optimitzant aquests
paràmetres per a les nostres aliatges. / Mohan, P. (2020). Development of new high performance Titanium alloys with Fe-addition for dental implants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147859
|
49 |
Desenvolvimento de nanocompósitos de alumina-carbeto de nióbio por sinterização não-convencional / Desarrollo de nanocomposites de alúmina-carburo de niobio obtenidos por sinterización no-convencionalAlecrim, Laís Ribeiro Rodrigues 25 July 2017 (has links)
Nanocompósitos de matriz de alumina (Al2O3) reforçada com uma segunda fase nanométrica apresentam melhores propriedades mecânicas, especialmente dureza, tenacidade à fratura e resistência ao desgaste, quando comparado à matriz monolítica. O carbeto de nióbio (NbC) possui propriedades que o tornam um material de reforço ideal em cerâmicas de matriz Al2O3, como alto ponto de fusão e dureza, baixa reatividade química e coeficiente de expansão térmica similar à Al2O3, prevenindo o aparecimento de trincas que diminuem a resistência do material. As maiores reservas de nióbio estão localizadas no Brasil e o estudo em torno do seu aproveitamento é importante para o país. Assim, o objetivo deste trabalho foi obter e caracterizar nanocompósitos de matriz de Al2O3 contendo 5% em volume de inclusões nanométricas de NbC obtidos por moagem reativa de alta energia, usando sinterização convencional, Spark Plasma Sintering (SPS) e micro-ondas. Para isso, os pós nanométricos precursores de Al2O3-NbC foram obtidos por moagem reativa de alta energia, realizada por 330 minutos em moinho tipo SPEX, desaglomerados, lixiviados com ácido clorídrico, adicionados à matriz de Al2O3 na proporção de 5% em volume e secos sob fluxo de ar. Os pós de Al2O3-5%vol.NbC foram sinterizados por diferentes métodos: convencional em atmosfera de argônio, micro-ondas e SPS, usando diferentes temperaturas. Os pós precursores foram caracterizados por difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e medida de tamanho de partículas. Os nanocompósitos sinterizados convencionalmente e por SPS foram caracterizados quanto a sua microestrutura, densidade aparente em relação a densidade teórica e dureza por nanoindentação. Os nanocompósitos sinterizados por SPS foram caracterizados quanto ao módulo de Young por nanoindentação, tenacidade à fratura e resistência a flexão em três pontos. Os nanocompósitos sinterizados convencionalmente e por SPS foram caracterizados quanto à resistência ao desgaste por ensaios esfera no disco, usando esferas de WC-6%Co com cargas de 30 e 60 N e esferas de Al2O3 com cargas de 15 e 30 N. Os resultados mostram que a moagem reativa de alta energia foi completa e efetiva na obtenção de pós nanométricos, com tamanhos de cristalito iguais a 9,1 e 9,7 nm, para Al2O3 e NbC, respectivamente. Além disso, a desaglomeração, após o processo de moagem reativa de alta energia, foi eficaz na dispersão das inclusões de NbC na matriz de Al2O3. No entanto, não foi possível obter nanocompósitos de Al2O3-5%vol.NbC com alta densidade usando os processos de sinterização convencional (92-93 %DT) e micro-ondas (80-90 %DT). No processo de sinterização por SPS, os nanocompósitos apresentaram densidades próximas à teórica (99 %DT) e, consequentemente, melhores durezas e resistência ao desgaste, quando comparadas aos materiais obtidos em forno convencional. Os resultados obtidos na caracterização da resistência ao desgaste confirmaram que esta propriedade é influenciada por diversos fatores, como método e temperatura de sinterização, as esferas utilizadas como contra-materiais e cargas aplicadas durante o ensaio. Os resultados indicaram que nanocompósitos de Al2O3-5%vol.NbC sinterizados por SPS apresentam potencial para aplicações em diversos segmentos industriais, onde se exige materiais de alto desempenho mecânico e de desgaste. / Los nanocomposites de matriz alúmina (Al2O3) reforzados con una segunda fase nanométrica presentan mejores propiedades mecánicas, especialmente de dureza, tenacidad a la fractura y resistencia al desgaste, en comparación con el material monolítico de alúmina. Por otra parte, el carburo de niobio (NbC), como refuerzo de segunda fase, presenta propiedades que lo convierten en un material ideal para las cerámicas de matriz Al2O3, tales como alta temperatura de fusión, alta dureza, baja reactividad química y un coeficiente de expansión térmica similar al material de Al2O3, evitando así la aparición de grietas que disminuyen la resistencia del material. Actualmente, las mayores reservas de niobio se encuentran en Brasil y el estudio sobre su uso es un hito muy importante para el país. Por lo tanto, el objetivo de esta tesis es obtener y caracterizar nanocomposites de matriz de Al2O3 con una segunda fase del 5% en volumen de nanopartículas de NbC obtenidos por molienda reactiva de alta energía y, mediante la sinterización convencional, Spark Plasma Sintering (SPS) y microondas. Para ello, los polvos precursores nanométricos de Al2O3-NbC fueron obtenidos mediante molienda reactiva de alta energía, durante 330 minutos en molino SPEX, desaglomerados, lixiviados con ácido clorhídrico, añadidos a la matriz de Al2O3 en la proporción de 5% en volumen y secado bajo flujo de aire. Los polvos de Al2O3-5vol.%NbC fueron sinterizados por diferentes métodos: convencional bajo una atmósfera de argón, microondas y SPS usando diferentes temperaturas. Los polvos precursores se caracterizaron por difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y la medición del tamaño de partícula. Los nanocomposites sinterizados convencionalmente y mediante SPS se caracterizaron microestructuralmente, se estudió la densidad aparente y la dureza por nanoindentación. Los nanocomposites sinterizados mediante SPS fueron caracterizados mediante el módulo de Young por nanoindentación, la tenacidad a la fractura y la resistencia a la flexión en tres puntos. Por otra parte, los nanocomposites sinterizados convencionalmente y mediante SPS fueron caracterizados respecto a resistencia al desgaste mediante la técnica de \"ball-on-disc\", utilizando esferas de WC-6%Co con cargas 30 y 60 N y esferas de Al2O3 con cargas 15 y 30 N. Los resultados muestran que la molienda reactiva de alta energía ha sido completa y eficaz en la obtención de polvos nanométricos con tamaños de cristalito de 9,1 y 9,7 nm para la Al2O3 y NbC, respectivamente. Además, la desaglomeración, después del proceso de molienda reactiva de alta energía, fue eficaz en la dispersión de las inclusiones de NbC en la matriz de Al2O3. Sin embargo, no ha sido posible obtener nanocomposites de Al2O3-5vol.%NbC con alta densidad usando procesos de sinterización convencional (92-93 %DT) y microondas (80-90 %DT). En el proceso de sinterización mediante SPS, los nanocomposites presentaron densidades cercanas a la teórica (99 %DT) y, en con-secuencia, mejor dureza y resistencia al desgaste en comparación con los materiales obtenidos en un horno convencional. Los resultados correspondientes a la resistencia al desgaste han confirmado que esta propiedad está influenciada por varios factores tales como el método y temperatura de sinterización, las esferas utilizadas como contramaterial y las cargas aplicadas durante el test. Los resultados finales indicaron que los nanocomposites de Al2O3-5vol.%NbC obtenidos mediante SPS tienen un gran potencial para las distintas aplicaciones industriales, las cuales re-quieren materiales de alto rendimiento mecánico y al desgaste.
|
50 |
Contribution à l'étude du relâchement des produits de fission hors de combustibles nucléaires en situation d'accident grave : effet de la pO2 sur la spéciation du Cs, Mo et Ba / Contribution to the study of fission products release from nuclear fuels in severe accident conditions : effect of the pO2 on Cs, Mo and Ba speciationLe Gall, Claire 16 November 2018 (has links)
Comprendre les mécanismes de spéciation des Produits de Fission (PF) dans le combustible nucléaire est un enjeu majeur pour pouvoir estimer précisément le terme source d’un accident grave. Parmi les nombreux PF créés, certains sont très réactifs et peuvent avoir un impact radiologique important en cas de relâchement dans l’atmosphère. C’est notamment le cas du césium (Cs), du molybdène (Mo) et du baryum (Ba). C’est dans ce contexte que s’inscrit le travail de thèse qui propose d’apporter des données expérimentales sur l’effet du potentiel oxygène sur la spéciation du Cs, du Mo et du Ba dans des combustibles nucléaires, à différents stades d’un accident grave.Une approche thermodynamique a été utilisée en support à l’interprétation des données expérimentales obtenues dans le cadre de ce travail. Deux types d’échantillons ont été étudiés: des combustibles MOX irradiés et des matériaux simulant un combustible UO2 à fort taux de combustion, obtenus par frittage à haute température (SIMFuel). Les échantillons ont été traités thermiquement dans des conditions représentatives d’un accident grave survenant dans un Réacteur à Eau Pressurisée (REP). Les conditions expérimentales ont couvert une gamme de température allant de 400°C à 2530°C et des potentiels oxygène situés entre -470 kJ.mol(O2)-1 et -100 kJ.mol(O2)-1. Les échantillons ont été caractérisés finement avant et après chaque traitement à l’aide de techniques complémentaires comme la microscopie optique et électronique, la microsonde et le SIMS dans le cas de l’irradié. Des mesures de XANES sur synchrotron ont été réalisées sur SIMFuel et ont conduit à des résultats importants en termes de spéciation des PF. Enfin, la technique de Spark Plasma Sintering (SPS) a été explorée avec succès pour la fabrication de SIMFuel contenant du Cs, du Mo et du Ba sous des formes chimiques représentatives d’un combustible REP en fonctionnement nominal.Ce travail a permis de mettre en évidence l’effet de la température en conditions oxydantes sur le comportement du combustible et des PF. Une oxydation du Mo, initialement présent sous forme métallique dans les inclusions blanches du combustible, en MoO2 a été observée dès 1000°C en conditions oxydantes. Une interaction entre le MoO2 formé et le Ba contenu dans la phase oxyde a eu lieu dans les mêmes conditions, menant à la formation de BaMoO4. Le potentiel oxygène joue aussi un rôle important dans le phénomène d’interaction pastille-gaine, en favorisant la diffusion des espèces en conditions oxydantes, diminuant ainsi la température de fusion du combustible. / In the nuclear community, it is a top priority to gain in-depth understanding of fission product (FP) speciation mechanisms occurring in nuclear fuel in order to precisely estimate the source term of a severe accident. Among the FP produced, some are highly reactive and may have a strong radiological impact if released into the environment. This is particularly the case of cesium (Cs), molybdenum (Mo) and barium (Ba). In this context, the objective of this study is to provide experimental data on the effect of the oxygen potential on Cs, Mo and Ba speciation in nuclear fuels at different stages of a severe accident.A thermodynamic approach was coupled with the experimental work to support the interpretation of experimental data. Two types of samples were studied in detail: irradiated MOX fuels and simulated high burn-up UO2 fuels produced through sintering at high temperature (SIMFuel). The samples were submitted to thermal treatments in conditions representative of a pressurised water reactor (PWR) severe accident. This approach made it possible to cover a temperature range from 400°C up to 2530°C and oxygen potentials from -470 kJ.mol(O2)-1 to -100 kJ.mol(O2)-1. The samples were characterized before and after each test using complementary techniques like OM, SEM, EPMA and SIMS in the case of irradiated fuels. XANES measurements using synchrotron radiation facilities were performed on SIMFuels and provided valuable results on FP speciation. Moreover, spark plasma sintering (SPS) was successfully investigated for the production of SIMFuel samples containing Cs, Mo and Ba in a chemical state representative of PWR fuel in normal operating conditions.This work highlighted the effect of oxidizing severe accident conditions on the fuel and FP behavior. Oxidation of Mo initially contained in the fuel’s metallic inclusions into MoO2 was observed to take place around 1000°C in oxidizing conditions. An interaction between MoO2 and the oxide phase containing Ba took place in the same conditions, leading to the formation of BaMoO4. The oxygen potential also plays an important role in fuel-cladding interactions, enhancing the diffusion of species in oxidizing conditions and lowering the temperature at which fuel melting occurs.
|
Page generated in 0.1446 seconds