• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas / Parallelization of credal network inference using distributed computing for sparse matrix factorization.

Pereira, Ramon Fortes 25 April 2017 (has links)
Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. / This study\'s objective is the computational performance improvement of credal network inference algorithms by applying computational parallel and distributed system techniques of sparse matrix factorization algorithms. Roughly, computational parallel techniques are used to transform systems in systems with algorithms that can be executed concurrently. And the matrix factorization is a group of mathematical techniques to decompose a matrix in a product of two or more matrixes. The sparse matrixes are matrixes which have most of their values equal to zero. And credal networks are similar to Bayesian networks, which are acyclic graphs representing a joint probability through conditional probabilities and their independence relations. Credal networks can be considered as a Bayesian network extension because of their manner of leading to uncertainty and the poor data quality. To apply parallel techniques of sparse matrix factorization in credal network inference the variable elimination method was used, where the credal network acyclic graph is associated to a sparse matrix and every eliminated variable is analogous to an eliminated column.
2

Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas / Parallelization of credal network inference using distributed computing for sparse matrix factorization.

Ramon Fortes Pereira 25 April 2017 (has links)
Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. / This study\'s objective is the computational performance improvement of credal network inference algorithms by applying computational parallel and distributed system techniques of sparse matrix factorization algorithms. Roughly, computational parallel techniques are used to transform systems in systems with algorithms that can be executed concurrently. And the matrix factorization is a group of mathematical techniques to decompose a matrix in a product of two or more matrixes. The sparse matrixes are matrixes which have most of their values equal to zero. And credal networks are similar to Bayesian networks, which are acyclic graphs representing a joint probability through conditional probabilities and their independence relations. Credal networks can be considered as a Bayesian network extension because of their manner of leading to uncertainty and the poor data quality. To apply parallel techniques of sparse matrix factorization in credal network inference the variable elimination method was used, where the credal network acyclic graph is associated to a sparse matrix and every eliminated variable is analogous to an eliminated column.
3

Minimum Cost Distributed Computing using Sparse Matrix Factorization / Minsta-kostnads Distribuerade Beräkningar genom Gles Matrisfaktorisering

Hussein, Seif January 2023 (has links)
Distributed computing is an approach where computationally heavy problems are broken down into more manageable sub-tasks, which can then be distributed across a number of different computers or servers, allowing for increased efficiency through parallelization. This thesis explores an established distributed computing setting, in which the computationally heavy task involves a number of users requesting a linearly separable function to be computed across several servers. This setting results in a condition for feasible computation and communication that can be described by a matrix factorization problem. Moreover, the associated costs with computation and communication are directly related to the number of nonzero elements of the matrix factors, making sparse factors desirable for minimal costs. The Alternating Direction Method of Multipliers (ADMM) is explored as a possible method of solving the sparse matrix factorization problem. To obtain convergence results, extensive convex analysis is conducted on the ADMM iterates, resulting in a theorem that characterizes the limiting points of the iterates as KKT points for the sparse matrix factorization problem. Using the results of the analysis, an algorithm is devised from the ADMM iterates, which can be applied to the sparse matrix factorization problem. Furthermore, an additional implementation is considered for a noisy scenario, in which existing theoretical results are used to justify convergence. Finally, numerical implementations of the devised algorithms are used to perform sparse matrix factorization. / Distribuerad beräkning är en metod där beräkningstunga problem bryts ner i hanterbara deluppgifter, som sedan kan distribueras över ett antal olika beräkningsenheter eller servrar, vilket möjliggör ökad effektivitet genom parallelisering. Denna avhandling undersöker en etablerad distribuerad beräkningssmiljö, där den beräkningstunga uppgiften involverar ett antal användare som begär en linjärt separabel funktion som beräknas över flera servrar. Denna miljö resulterar i ett villkor för tillåten beräkning och kommunikation som kan beskrivas genom ett matrisfaktoriseringsproblem. Dessutom är det möjligt att relatera kostanderna associerade med beräkning och kommunikation till antalet nollskilda element i matrisfaktorerna, vilket gör glesa matrisfaktorer önskvärda. Alternating Direction Method of Multipliers (ADMM) undersöks som en möjlig metod för att lösa det glesa matrisfaktoriseringsproblemet. För att erhålla konvergensresultat genomförs omfattande konvex analys på ADMM-iterationerna, vilket resulterar i ett teorem som karakteriserar de begränsande punkterna för iterationerna som KKT-punkter för det glesa matrisfaktoriseringsproblemet. Med hjälp av resultaten från analysen utformas en algoritm från ADMM-iterationerna, vilken kan appliceras på det glesa matrisfaktoriseringsproblemet. Dessutom övervägs en ytterligare implementering för ett brusigt scenario, där befintliga teoretiska resultat används för att motivera konvergens. Slutligen används numeriska implementeringar av de framtagna algoritmerna för att utföra gles matrisfaktorisering.

Page generated in 0.1378 seconds