Spelling suggestions: "subject:"elektrochemie"" "subject:"elektrochemische""
1 |
Donor-Acceptor Conjugated Polymers for Application in Organic Electronic Devices / Donor-Akzeptor Konjugierte Polymere für die Anwendung in Organischen Elektronischen BauteilenReitzenstein, Dörte January 2010 (has links) (PDF)
In the first part of the work three polycarbazoles poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-2,7-diyl P1, poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-3,6-diyl P2 and poly[N-(4-(diphenylmethylene)-phenyl)- carbazole]-2,7-diyl P3 were synthesized by Yamamoto coupling reaction and their spectroscopic and electrochemical properties were investigated. Absorption and fluorescence characteristics of P1 and P3 were found to be similar to other 2,7-linked polycarbazoles, whereas P2 shows a CT absorption band arising from a shift of electron density from the nitrogen of the carbazole donor to the triarylborane acceptor. This causes a negative solvatochromic absorption and a positive solvatochromic fluorescence behaviour and is responsible for the significantly enlarged fluorescence quantum efficiency in solution and solid state compared to other 3,6-linked polycarbazoles. Thus the spectroscopic properties are governed by the connection pattern: the 2,7-linked polycarbazoles are not affected by the acceptor substituent due to the rigid poly-para-phenylene-like backbone structure, whereas the 3,6-linked polycarbazole P2 is dominated by the properties of the monomer unit due to its more flexible (less conjugated) structure. The oxidative processes of P1-P3 have been investigated in detail by cyclic voltammetry, which are similar to known 2,7- and 3,6-polycarbazoles. The reversible reduction found for P1 and P2, respectively, is attributed to the reduction of the triarylborane moiety. No reduction process referring to the carbazole moiety was observed. Due to its better solubility compared to P1 and P3 only P2 was used as active layer in an OLED device (ITO/P2/Al). The electroluminescence spectrum revealed CIE coordinates of (0.17, 0.21). In the second part of the work the low band gap polyradical poly{[((2,3,4,5,6-pentachlorophenyl)-bis(2,3,5,6-tetrachlorophenyl)methyl radical)-4,4’-diyl]-alt-4,4’-bis(vinylphenyl)-4-(2-ethylhexyloxy)phenylamin} P4 was synthesized by Horner-Emmons reaction. It shows an IV-CT band in the NIR, which arises from an ET from the triarylamine donor to the PCTM radical acceptor. This transition is confined to one monomer unit as deduced from comparison with the monomer spectra. HOMO and LUMO of P4 determined by cyclic voltammetry are at -5.5 and -4.5 eV, respectively. The smaller electrochemical band gap (1.0 eV) compared to the optical band gap (1.2 eV) is probably caused by ion pairing effects in the electrochemical experiments and indicates a low exciton binding energy. Femtosecond-pump-probe transient absorption spectroscopy revealed the spectral features of the oxidized triarylamine donor and the reduced PCTM acceptor similar to the spectra obtained separately for positive and negative potentials by spectroelectrochemistry. Thus the ET event causing the IV-CT absorption band could unambiguously be identified. The decay of the IV-CT state was found to be biexponential. The fast solvent dependent decay component is ascribed to the direct decay from the IV-CT state to the ground state, whereas the slow solvent independent decay component is tentatively attributed to an equilibrium formation of the IV-CT state and a completely charge separated state formed by charge migration along the polymer backbone. Well balanced ambipolar charge transport with hole and electron mobilities of ca. 3 × 10-5 cm2 V-1 s-1 was found in OFET devices (BG/TC structure) comprising an additional insulating organic PPcB layer. Polymer/polymer BHJ solar cell devices with the structure glass/ITO/PEDOT:PSS/(P3HT/P4)/Ca/Al yielded a power conversion efficiency of 3.1 × 10-3 %, VOC = 0.38 V, JSC = 2.8 × 10-2 mA cm-2 and FF = 0.29 for the 1:4 (P3HT/P4) blend ratio. The improper solid state morphology of P4 that causes the unsatisfying performance of OFET and solar cell devices renders P4 less suitable for these applications, whereas the hypothesis of charge migration in the excited state is worth to be investigated in more detail. / Im ersten Teil dieser Arbeit wurden die drei Polycarbazole Poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazol]-2,7-diyl P1, Poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazol]-3,6-diyl P2 und Poly[N-(4-(diphenylmethylen)-phenyl)-carbazol]-2,7-diyl P3 mittels Yamamoto Kupplung synthetisiert und ihre spektroskopischen und elektrochemischen Eigenschaften untersucht. Absorptions- und Fluoreszenzeigenschaften von P1 und P3 sind denen anderer 2,7-verknüpfter Polycarbazole ähnlich, wohingegen P2 eine CT Absorptionsbande zeigt, die durch die Verschiebung von Elektronendichte vom Stickstoff des Carbazoldonors zum Triarylboranakzeptor verursacht wird. Daraus ergeben sich negativ solvatochromes Absorptions- und positiv solvatochromes Fluoreszenzverhalten und eine deutlich erhöhte Fluoreszenzquantenausbeute in Lösung und im Festkörper verglichen mit anderen 3,6-verknüpften Polycarbazolen. Das bedeutet, dass die spektroskopischen Eigenschaften durch die Art der C-C-Verknüpfung gesteuert werden können: das 2,7-verknüpfte Polycarbazol P1 wird durch den Akzeptorsubstituenten aufgrund des starren Polymergerüsts, dem eine poly-para-phenylenartige und damit stärker delokalisierte Struktur zugrunde liegt, nicht beeinflusst. Im Gegensatz dazu treten beim 3,6-verknüpften Polycarbazol P2 die Eigenschaften der Monomereinheit aufgrund der flexibleren 1,4-diaminobiphenyl Struktur in den Vordergrund. Die Oxidationsprozesse von P1-P3 wurden im Detail mittels Cyclovoltammetrie untersucht. Die Ergebnisse stimmen mit Literaturwerten überein. Außerdem wurde bei den Messungen von P1 und P2 ein reversibler Reduktionsprozess, der am Boranzentrum stattfindet, beobachtet. Eine Reduktion der Carbazoleinheit konnte hingegen nicht gefunden werden. Mit der Herstellung von OLEDs der Struktur ITO/P2/Al konnte blaue Elektrolumineszenz mit den CIE Farbkoordinaten (0.17, 0.21) nachgewiesen werden. Im zweiten Teil der Arbeit wurde das low band gap Polyradikal Poly{[((2,3,4,5,6-pentachlorphenyl)-bis(2,3,5,6-tetrachlorphenyl)methyl radical)-4,4‘-diyl]-alt-4,4‘-bis(vinylphenyl)-4-(2-ethylhexyloxy)phenylamin} P4 mittels Horner-Emmons Reaktion synthetisiert. Im NIR beobachtet man eine IV-CT Absorptionsbande, die durch einen Elektronentransfer vom Triarylamindonor zum PCTM-Radikalakzeptor hervorgerufen wird. Dieser elektronische Übergang ist auf eine Monomereinheit begrenzt wie der Vergleich mit den Monomerabsorptionsspektren zeigt. HOMO und LUMO Energien von P4, die anhand der Cyclovoltammogramme bestimmt wurden, liegen bei -5.5 und -4.5 eV. Die im Vergleich zur optischen Energielücke (1.2 eV) kleinere elektrochemische Energielücke (1.9 eV) ist wahrscheinlich auf Ionenpaareffekte bei den elektrochemischen Messungen zurückzuführen, deutet aber auch auf eine geringe Excitonenbindungsenergie hin. Transiente Absorptionsspektren zeigen die spektralen Charakteristika von oxidiertem Triarylamindonor und reduziertem PCTM-Akzeptor vergleichbar mit den Spektren der spektroelektrochemischen Messungen, bei denen eine Lösung von P4 jeweils nacheinander reduziert und oxidiert wurde. Dadurch konnte der Elektronentransferprozess, der zur Ausbildung der IV-CT Bande führt, zweifelsfrei nachgewiesen werden. Der IV-CT Zustand zerfällt biexponentiell. Der schnelle, lösungsmittelabhängige Zerfall beschreibt den direkten Übergang vom IV-CT Zustand in den elektronischen Grundzustand. Dagegen wird der langsame, lösungsmittelunabhängige Zerfall einer Gleichgewichtseinstellung zwischen IV-CT Zustand und vollständig ladungsgetrenntem Zustand, der durch Ladungswanderung entlang der Polymerkette erreicht wird, zugeschrieben. In OFETs mit P4 als Halbleiter und einer zusätzlich isolierenden, organischen PPcB Schicht wurde ein ausgeglichener, ambipolarer Ladungstransport mit Loch- und Elektronenbeweglichkeiten von ca. 3 × 10-5 cm2 V-1 s-1 gefunden. Polymer/Polymer BHJ Solarzellenmodule mit der Struktur Glas/ITO/PEDOT:PSS/(P3HT/P4 1:4)/Ca/Al hatten einen Wirkungsgrad von 0.0031 % bei einer Leerlaufspannung VOC = 0.38 V, einem Kurzschlussstrom JSC = 0.028 mA cm-2 und einem Füllfaktor FF = 0.29. Die ungeeignete Morphologie der P4- und P3HT/P4-Schichten als Ursache für die unbefriedigende Performance von OFETs und Solarzellen lässt solche Anwendungen für P4 wenig sinnvoll erscheinen. Dagegen verdient die Hypothese der Ladungswanderung im angeregten Zustand eine vertiefte Untersuchung.
|
2 |
Electrochemical Synthesis and Spectroelectrochemical Characterization of Conducting Copolymers of Aniline and o-AminophenolAli Shah, Anwar-ul-Haq 25 May 2007 (has links) (PDF)
Es wurden Versuche zur Verbesserung der pH–Wert-Abhängigkeit der elektrochemischen Aktivität von Polyanilin (PANI) durch elektrochemische Copolymerisation von Anilin (ANI) mit o-Aminophenol (OAP), einem Anilinderivat mit zwei oxidierbaren Gruppen (Amino- und Hydroxylgruppe), durchgeführt. Diese Eigenschaft ist für die Anwendung in Sensoren, Biosensoren, Biokraftstoffzellen und Akkus erstrebenswert. Die Copolymerisation wurde mit verschiedenen Konzentrationen von OAP und einer konstanten Konzentration von AN in wässriger Schwefelsäurelösung durchgeführt. Die Überwachung der Copolymerisation erfolgte mit Hilfe zyklischer Voltammetrie (CV) und in situ UV-Vis Spektroskopie wurde die verfolgt. Homo- und Copolymere wurden mittels CV, in situ Leitfähigkeitsmessungen, FTIR-Spektroskopie, in situ UV-Vis und Raman-spektroelektrochemischen Untersuchungen charakterisiert.
Die Copolymerisationsrate und die Eigenschaften der Copolymere hängen in hohem Maße von der Monomerkonzentration ab. Bei hohen OAP–Molarbrüchen wurde eine starke Hemmung der Elektropolymerisation beobachtet. Die unter optimalen Bedingungen hergestellten CVs der Copolymere zeigen eine Verschiebung des ersten Redoxpaares um 0,10 V in positive Richtung. Der Reduktionspeak des ersten PANI-Redoxpaares ist durch ein Stromplateau zwischen 0,06 und 0,28 V ersetzt. Die Copolymere weisen eine gute Haftung auf der Elektrodenoberfläche auf und zeigen Redoxprozesse bis pH = 10,0 (Copolymere A und B). Wie bei PANI wurden bei den in situ Leitfähigkeitsmessungen der Copolymere zwei Umwandlungen beobachtet. Im Vergleich dazu waren die Leitfähig keiten jedoch um 2,5 bis 3,0 Größenordnungen geringer. Nach der Initiationsreaktion zeigte die Elektrosynthese von PANI auf POAP–modifizierten Elektroden eine Copolymerbildu ng und schließlich die Bildung eines PANI–Films an der Grenzfläche Copolymer/Lösung. Der “Memoryeffekt“ der Doppelschichtstrukturen beider Polymere wird in Bezug auf die während der Redoxprozesse stattfindenden Protonierung/Deprotonierung und Anionenver brauch diskutiert.
In situ UV-Vis spektroelektrochemische Studien der Copolymerisation von OAP mit ANI bei konstanten Potentialen auf Indiumzinnoxid (ITO) beschichteten Glaselektroden zeigten die Bildung eines Zwischenproduktes bei der Initialisierung der Copolymerisation durch eine Reaktion der OAP–Kationenradikale mit denen des ANI. Es bilden sich Kopf-Schwanz-Dimere oder Oligomere. Im UV-Vis Spektrum wurde dem Zwischenprodukt ein Adsorptionspeak bei 520 nm zugeschri- eben. Weiterhin wurden charakteristische UV-Vis und Raman-Banden der Copolymere auf ITO–Glas - und Goldelektroden identifiziert und deren Einfluss auf das Elektrodenpotenzial erörtert. Die spektroelektrochemischen Ergebnisse zeigen die Bildung von auf PANI basierenden Copolymeren bei geringen OAP–Konzentrationen. Der vermehrte Einbau von OAP–Einheiten in das Copolymer bei höheren OAP–Konzentrationen führte jedoch zu signifikanten spektroelektrochemischen Unterschieden im Vergleich zu den beiden Homopolymeren, was auch die FTIR-Spektren unterstreichen.
Die CVs der POAP–Filme, die potentiostatisch bei relativ niedrigen Elektrodenpotentialen (ESCE = 0,70…0,80 V) synthetisiert wurden, zeigen zwei Redoxprozesse, im Gegensatz zu den in der Literatur veröffentlichten Werten über potenziodynamisch hergestelltes POAP (ESCE = 0,29 V). Das Polymer wurde mittels in situ UV-Vis und in situ Raman Spektroelektrochemie untersucht. Unter Verwendung eines Kr+-Lasers (647.1 nm) wird das um 1645 cm-1 beobachtete Raman-Band diskutiert. Die Intensität dieses Bandes wächst in positive Potentialrichtung bis zu einem Maximum von ESCE = 0,30 V. Danach fällt es wieder ab, was auf das Vorhandensein von Zwischenprodukten schließen lässt.
|
3 |
Electrochemical Synthesis and Spectroelectrochemical Characterization of Conducting Copolymers of Aniline and o-AminophenolAli Shah, Anwar-ul-Haq 25 May 2007 (has links) (PDF)
Es wurden Versuche zur Verbesserung der pH–Wert-Abhängigkeit der elektrochemischen Aktivität von Polyanilin (PANI) durch elektrochemische Copolymerisation von Anilin (ANI) mit o-Aminophenol (OAP), einem Anilinderivat mit zwei oxidierbaren Gruppen (Amino- und Hydroxylgruppe), durchgeführt. Diese Eigenschaft ist für die Anwendung in Sensoren, Biosensoren, Biokraftstoffzellen und Akkus erstrebenswert. Die Copolymerisation wurde mit verschiedenen Konzentrationen von OAP und einer konstanten Konzentration von AN in wässriger Schwefelsäurelösung durchgeführt. Die Überwachung der Copolymerisation erfolgte mit Hilfe zyklischer Voltammetrie (CV) und in situ UV-Vis Spektroskopie wurde die verfolgt. Homo- und Copolymere wurden mittels CV, in situ Leitfähigkeitsmessungen, FTIR-Spektroskopie, in situ UV-Vis und Raman-spektroelektrochemischen Untersuchungen charakterisiert.
Die Copolymerisationsrate und die Eigenschaften der Copolymere hängen in hohem Maße von der Monomerkonzentration ab. Bei hohen OAP–Molarbrüchen wurde eine starke Hemmung der Elektropolymerisation beobachtet. Die unter optimalen Bedingungen hergestellten CVs der Copolymere zeigen eine Verschiebung des ersten Redoxpaares um 0,10 V in positive Richtung. Der Reduktionspeak des ersten PANI-Redoxpaares ist durch ein Stromplateau zwischen 0,06 und 0,28 V ersetzt. Die Copolymere weisen eine gute Haftung auf der Elektrodenoberfläche auf und zeigen Redoxprozesse bis pH = 10,0 (Copolymere A und B). Wie bei PANI wurden bei den in situ Leitfähigkeitsmessungen der Copolymere zwei Umwandlungen beobachtet. Im Vergleich dazu waren die Leitfähig keiten jedoch um 2,5 bis 3,0 Größenordnungen geringer. Nach der Initiationsreaktion zeigte die Elektrosynthese von PANI auf POAP–modifizierten Elektroden eine Copolymerbildu ng und schließlich die Bildung eines PANI–Films an der Grenzfläche Copolymer/Lösung. Der “Memoryeffekt“ der Doppelschichtstrukturen beider Polymere wird in Bezug auf die während der Redoxprozesse stattfindenden Protonierung/Deprotonierung und Anionenver brauch diskutiert.
In situ UV-Vis spektroelektrochemische Studien der Copolymerisation von OAP mit ANI bei konstanten Potentialen auf Indiumzinnoxid (ITO) beschichteten Glaselektroden zeigten die Bildung eines Zwischenproduktes bei der Initialisierung der Copolymerisation durch eine Reaktion der OAP–Kationenradikale mit denen des ANI. Es bilden sich Kopf-Schwanz-Dimere oder Oligomere. Im UV-Vis Spektrum wurde dem Zwischenprodukt ein Adsorptionspeak bei 520 nm zugeschri- eben. Weiterhin wurden charakteristische UV-Vis und Raman-Banden der Copolymere auf ITO–Glas - und Goldelektroden identifiziert und deren Einfluss auf das Elektrodenpotenzial erörtert. Die spektroelektrochemischen Ergebnisse zeigen die Bildung von auf PANI basierenden Copolymeren bei geringen OAP–Konzentrationen. Der vermehrte Einbau von OAP–Einheiten in das Copolymer bei höheren OAP–Konzentrationen führte jedoch zu signifikanten spektroelektrochemischen Unterschieden im Vergleich zu den beiden Homopolymeren, was auch die FTIR-Spektren unterstreichen.
Die CVs der POAP–Filme, die potentiostatisch bei relativ niedrigen Elektrodenpotentialen (ESCE = 0,70…0,80 V) synthetisiert wurden, zeigen zwei Redoxprozesse, im Gegensatz zu den in der Literatur veröffentlichten Werten über potenziodynamisch hergestelltes POAP (ESCE = 0,29 V). Das Polymer wurde mittels in situ UV-Vis und in situ Raman Spektroelektrochemie untersucht. Unter Verwendung eines Kr+-Lasers (647.1 nm) wird das um 1645 cm-1 beobachtete Raman-Band diskutiert. Die Intensität dieses Bandes wächst in positive Potentialrichtung bis zu einem Maximum von ESCE = 0,30 V. Danach fällt es wieder ab, was auf das Vorhandensein von Zwischenprodukten schließen lässt.
|
4 |
Spektroelektrochemie an einzelnen (6,5)-Kohlenstoffnanoröhren / Spectroelectrochemistry of single (6,5)-carbon nanotubesRühl, Nicolas January 2014 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurde durch einzelmolekülspektroskopischer bzw. -mikroskopischer Methoden in Kombination mit einer mikrofluischen Zel- le unter Potenzialkontrolle die Elektrochemie von einzelnen einwandigen (6,5)- Kohlenstoffnanoröhren untersucht. Hierfür wurde ein Nahinfrarot-Photolumineszenz- Mikroskop aufgebaut und eine speziell an die experimentellen Vorgaben angepasste elektrochemische Zelle entwickelt, insofern als drei Elektroden (Arbeits-, Gegen- und Referenzelektrode) in einen mikrofluidischen Chip integriert wurden. Darüber hinaus war für die Durchführung der Experimente unter Wasser- und Sauerstoffaus- schluss die Konstruktion eines Handschuhkastens notwendig, sowie eine allgemeine Vorbehandlung der Elektrolytlösungen zur Entfernung gelöster Gase und Wasserreste.
Ein weiteres Projekt umfasste den Aufbau einer chemischen Gasphasenabschei- dungsapparatur zur Synthese von Kohlenstoffnanoröhren. Die hierbei durchgeführten Experimente erbrachten Klarheit über den Einfluss der Prozessparameter Druck, Temperatur und Durchflussrate an Edukten.
Aus den PL-Intensitätsänderungen bei Potenzialvariation konnten Reduktions- und Oxidationspotenziale (ERed = 0.15 V; EOx = 1.34 V) einzelner (6,5)-SWNTs gegen- über einer Platin Referenzelektrode und einem daraus resultierenden Redoxpotenzial
von ∆ERedOx = 1.19 V ermittelt werden. Durch diese einzelmolekülspektroskopische
Methode konnte zum einen gewährleistet werden, dass nur dieser spezielle Chira- litätstyp untersucht wurde und zum anderen eine Verfälschung der Resultate durch einen Potenzialabfall wie er typischerweise in CNT-Filmen auftritt aussgeschlossen werden. Eine Kombination der PL-Daten mit der Ramanintensitätsabhängigkeit des (6,5)-SWNT-S2-Übergangs bei Potenzialvariation erlaubte eine genauere Analyse des Löschmechanismus der PL von Kohlenstoffnanoröhren. Mithilfe eines von Her- tel et al. entwickelten diffusionslimitierten Stoßdesaktivierungsmodells konnte eine invers-quadratische Proportionalität zwischen der (6,5)-SWNT-Emission und den spannungsinduzierten Ladungsträgern ausgemacht werden. Auf Grundlage dieses Ergebnisses folgt, dass die über Photolumineszenzänderungen ermittelten Reduktions-und Oxidationswerte nicht mit den Bandkanten der CNTs übereinstimmen müssen, und dass für deren Bestimmung vielmehr auf Raman- bzw. Absorptionsspektroskopi- sche Techniken zurückgegriffen werden muss.
Die einzelmolekülspektroskopische Herangehensweise ermöglichte ferner eine statis- tische Analyse der Verteilung der Reduktions- und Oxidationspotenziale im Vergleich zu den jeweiligen Erwartungswerten. Hierdurch konnte eine Einteilung der Modifika- tionseinflüsse auf das SWNT-Redoxverhalten in zwei Grenzfälle erfolgen. Es wurde angenommen, dass diese als “Dispergiermitteleffekte” und “CNT-Strukturdefekte” be- zeichneten Auswirkungen entweder das Resultat einer heterodispersen Verteilung an DOC auf der CNT-Oberfläche oder eine Folge von Defekten in der CNT-Gitterstruktur waren. In diesem Zusammenhang ergab sich aus der interpartikulären Analyse der Reduktions- und Oxidationswerte eine Korrelation, die einem dominierenden Einfluss der “CNT-Strukturdefekte” zugeordnet werden konnte. Dieser Beobachtung entgegen- gesetzt konnten aber auch über Untersuchungen der Redoxpotenziale innerhalb einer (6,5)-SWNT lokale Bereiche ausgemacht werden, die eine signifikante Abhängigkeit von “Dispergiermitteleffekte” aufwiesen.
Abgesehen von diesen Einflüssen auf den Emissionsverlauf wurde auch eine Be- trachtung der Breite des spannungsgesteuerten Emissionsabfall durchgeführt. Da- raus konnte ermittelt werden, dass diese Ausdehnung eine Konsequenz aus der PL- Löschungseffizienz der Ladungsträger ist und, dass bei einer Verteilung von 0.32 Löschzentren pro Nanometer eine vollständige Abnahme der Photolumineszenzinten- sität induziert wird.
Darüber hinaus wurde im Rahmen dieser Arbeit das redoxchemische Verhalten in- dividueller (6,5)-SWNTs in Wechselwirkung mit Ferrocenmolekülen untersucht. Die erhaltenen Ergebnisse ließen annehmen, dass die sich ausbildende Verbindung nicht-kovalenter Natur ist. Zwei verschiedene Gründe führten zu dieser Erkennt- nis: einerseits ließen sich die Ferrocenmoleküle von der CNT-Oberfläche durch ein Durchspülen des mikrofluidischen Kanals mit einer reinen DMF-Lösung entfernen und andererseits war keine dauerhafte Emissionsminderung durch die Ausbildung kovalenter Bindungen zu beobachten. Aus der potenzialabhängigen PL wurde zudem ein Elektronentransfer der Ferrocenmoleküle in die optisch generierten Löcher des CNT-Valenzbandes festgestellt und über eine anregungsintensitätsabhängige Messung die Zunahme dieses Ladungstransfers bei steigendem Photonenfluss nachgewiesen.
Hinsichtlich der Anwendung von Kohlenstoffnanoröhren zur Elektrolyse bzw. Photo- lyse von Wasser wurde auch die Redoxchemie von (6,5)-SWNTs in diesem Solvens untersucht. Bezüglich der Emissionsintensität konnte gezeigt werden, dass diese im Vergleich zu organischen Lösungsmitteln reduziert vorliegt. Außerdem wurde eine irreversible Reaktion nach anodischer Polarisation über eine dauerhafte Löschung der PL beobachtet. Die Bestimmung der hierfür notwendigen Reaktionsumstände erbrachte, dass Wasser, Exzitonen (erzeugt durch optische Anregung) und spannungs- induzierte Löcher im Valenzband zur Bildung einer [SWNT(Q)]-Spezies führen, welche die irreversible Minderung der CNT-Emission verursacht. Darüber hinaus konnte die Reaktionsgeschwindigkeit über eine Kinetik pseudo-nullter-Ordnung be- schrieben werden, unter der Voraussetzung, dass die soeben genannten Parameter konstant verblieben. Desweiteren zeigte sich in einer ferrocenhaltigen Lösung, dass der Löscheffekt der [SWNT(Q)]-Spezies im anodischen Potenzialbereich teilweise reduziert wird. Es wurde angenommen, dass diese Beobachtung auf eine Oxidation der Löschzentren durch die Fc+-Kationen gründet.
Mit Hilfe der CVD-Apparatur gelang es Kohlenstoffnanoröhren zu synthetisieren, wobei Ethanol als Kohlenstoffquelle und ein Eisen-Kobalt-Zeolith-Gemenge als Ka- talysator diente. Die Analyse der verschiedenen Prozessparameter zeigte, dass bei T = 750 °C das beste Verteilungsverhältnis zwischen den gewünschten (6,5)-SWNTs und anderen CNT-Chiralitäten bzw. dem amorphen Kohlenstoff vorliegt. Hierfür war, dass bei T < 750 °C die Verbrennung unerwünschter amorpher Kohlenstoffreste nur geringfügig stattfindet, und dass bei T > 750 °C die Bildung anderer Chiralitäten mit größerem Durchmesser als die (6,5)-SWNT bevorzugt wurde. Die Variation der Durchflussrate hingegen wirkte sich nur in einer absoluten Zunahme aller Chirali- täten aus. Die Steigerung des (6,5)-SWNT-Anteils für höhere Durchflüsse gelang trotzdem durch die geschickte Auswahl geeigneter Druck- und Temperaturwerte. Die Experimente zur Untersuchung der Druckabhängigkeit wiesen auf eine Relation mit dem Gesetz von Le Chatelier hin, insofern als bei einer Druckverringerung eine Verschiebung der Ethanol-Crackreaktion auf Produktseite stattfand. In diesem Zusam- menhang wurde angenommen, dass die damit verstärkt gebildeten Moleküle Ethan, Ethen und Methan den CNT-Anteil zwar erhöhen, jedoch auch eine Steigerung der amorphen Kohlenstoffkonzentration verursachen. Dementsprechend ergab ein Druck von p = 9 mbar das beste (6,5)-SWNT zu dem amorphen Kohlenstoffverhältnis.
Anhand der Arbeiten in dieser Dissertation sind neue Erkenntnisse zwischen der PL-Sensitivität von (6,5)-SWNTs und deren Ladungszustand erhalten worden. Insbe- sondere die genaue Bestimmung der Korrelation zwischen der Photolumineszenz und den induzierten Ladungsträgern ermöglicht einen gezielteren Einsatz von Kohlenstoff- nanoröhren – so zum Beispiel im Bereich der Sensorik. In diesem Zusammenhang zeigen auch die interpartikulären Analysen der Redoxpotenzialverteilung die genau- en Auswirkungen vom Lösungsmittel und der Defektdichte auf die elektronische Struktur der CNTs auf. Darüber hinaus kann aus der Ursachenbestimmung für die Varianz der literaturbekannten Reduktions- bzw. Oxidationspotenziale fortan die ge- eignete spektroskopische Methode zur Evaluierung der Position von Leitungs- und Valenzband in Kohlenstoffnanoröhren besser eingegrenzt werden. Die spektroelektro- chemischen Analysen von (6,5)-SWNTs im Lösungsmittel Wasser und speziell die Bestimmung der Kinetik für die auftretende Reaktion liefern einen tieferen Einblick in die Wechselwirkung (6,5)-SWNT-H2O. Diese Ergebnisse sind insbesondere bei der Verwendung von Kohlenstoffnanoröhren als Elektrodenmaterial für die photolytische bzw. elektrolytische Spaltung von Wasser in Wasserstoff und Sauerstoff von Bedeu- tung. Neben der Untersuchung der SWNT-Wasser Interaktion unter andoischer und optischer Anregung, die zu einer kovalenten Bindung führte, wurde mit Hilfe der (6,5)- SWNT-Ferrocen Wechselwirkung ein Beispiel für eine nichtkovalente Redoxreaktion dargestellt, womit ein Vergleich dieser beiden Spezies und ihrer unterschiedlichen Auswirkungen auf die elektronische Struktur aufgezeigt werden konnte. / In the present study the electrochemistry of individual (6,5)-single wall carbon nano- tubes was investigated using a combination of electrochemical methods and single molecule fluorescence spectroscopy and microscopy. For this purpose a near infrared photoluminescence microscope was built and an electrochemical cell incorporated into a microfluidic chip was designed. To exclude oxygen and water during the ex- periments a glove box was constructed and for the electrolyte solutions a general preparation routine was executed, which included a degassing and drying of the solvent.
A further project of this thesis was the design of a chemical vapor deposition apparatus to synthesize carbon nanotubes. The experiments provided clarity on the influence of process parameters such as pressure, temperature and flow rate of the reactants.
The emission changes due to potential variation allowed for the determination of the reduction ERed = 0.15 V and oxidation potential EOx = 1.34 V of individual (6,5)- SWNTs with reference to a platinum electrode. Accordingly a total redoxpotential of
∆ERedOx = 1.19 V was obtained. The single molecule spectroscopic approach ensured
further that only one specific CNT-chirality was investigated and that no potential drop like in CNT-films occured. The combination of the PL data and Raman intensity dependencies of the (6,5)-SWNT-S2-transition at potential changes allowed to define the quenching mechanism of the CNT emission. With the use of a difusion limited contact quenching model from Hertel et al. an inverse square proportionality between the (6,5)-SWNT emission and the charge carrier density was shown. Therefore it was concluded that the reduction and oxidation values obtained by emission changes do not correspond to the bandedges of the CNTs and that a determination of the bandgap should be done through absorption or Raman spectroscopy.
The interparticle analysis of the (6,5)-SWNT reduction and oxidation potential sho- wed an absolute potential variation with respect to the reference values. The influences for this changes were classified into two cases: the so called “dispersing agent effects” and the “CNT structure defects”. It was assumed that these were a result of unequal distributed dispersing agents on the CNT surface or defects in the CNT lattice structure. Further, the interparticle determined correlation between reduction and oxidation values was attributed to the “CNT structure defects” and was therefore assumed to exercise the most dominant influence. Conversely, after the investigations of the intraparticle redox potentials, local areas were identified with a dependence to “dispersing agent effects”.
In addition the width of the emission decrease as a result of the oxidation or reduction process of the (6,5)-SWNT was analysed. This investigation led to the conclusion that the charge carriers quenching efficiency mainly contributes to the overall width. Beyond that the data indicated that a distribution of 0.32 quenching centers per nanometer is needed for the total quenching of the photoluminescence.
In addition to the redox chemistry analysis of pristine (6.5)-SWNTs, the investigation of the dependency in presence of ferrocene molecules showed that the interaction of the herein forming complex is of non-covalent type. This conclusion was based on two facts: on the one hand, the ferrocene molecules desorbed from the CNT surface when the solvent in the microfluidic channel was exchanged with a pure dimethylformamide solution and on the other hand, no permanent decrease in emission intensity due to covalent bond forming was observed. The potential-dependent PL behavior allowed for the assumption of a charge transfer from the adsorbed ferrocene molecules into the optically generated holes in the CNT. Furthermore the experimental data allowed to assume that this charge transfer increases with higher photon flux.
With regard to applications with carbon nanotubes for electrolysis and photolysis of water, the redox chemistry of (6,5)-SWNTs was investigated in this solvent. With re- spect to the emission intensity in the organic electrolyte, two effects could be identified which were firstly the overall decrease of the PL, and secondly an irreversible reaction during anodic polarization, which manifested itself by a permanent quenching of the photoluminescence. The reaction conditions were determined with the result that water, optical generated electron-hole pairs and potential induced holes in the valence band formed a [SWNT(Q)] species, which caused the irreversible reduction of the CNT emission. Moreover, the evaluated reaction rate followed pseudo-zero-order kinetics, provided that the just mentioned parameters were constant. The investigation of this [SWNT(Q)] species in a ferrocene solution showed that the quenching effect of these defects was reduced for anodic polarisation by assuming an oxidation of the [SWNT(Q)] species by the Fc+ cations.
The CVD apparatus enabled to synthesize carbon nanotubes. Ethanol was used as the carbon source and a mixture of iron and cobalt mixed with a zeolite worked as catalyst. The analysis of the various process parameters showed that the best distribution ratio between the desired (6,5)-SWNTs and other CNT chiralities or amorphous carbon were obtained for T = 750 °C . It was assumed that this behavior is due to the fact that at T < 750 °C burning processes of unwanted amorphous carbon residues only slightly occurred, and that at T > 750 °C the growth mechanism favoured chiralties with larger diameter. By varying the flow rate, only an absolute increase of all chiralities was observed. In this context it should be noted that nevertheless the chirality distribution can be improved to higher yields of (6,5)-SWNTs, by an adaptation of the pressure and temperature during synthesis. The experiments which investigated the impact of reaction pressure changes, indicated a relation in accordance to Le Chatelier law. Therefore lower pressure moved the equilibrium towards product formation of the ethanol-cracking reaction, which increased the molecule concentration of ethane, ethylene and methane and the overall CNT yield. However, this caused also an increment of the absolute amorphous carbon concentration. According to that, it was found that a pressure of p = 9 mbar yielded the best (6.5)-SWNT to amorphous carbon ratio.
The experiments performed in this thesis allowed to gain new insights about the sensitivity of the emission of (6,5)-SWNTs due to charging. Especially the deter- mination of the correlation between the photoluminescence and charging level of the CNTs will allow for a more selective use of carbon nanotubes – for example in sensors. In this context the analysis of the interparticle redoxpotential distribution showed precisely the effects of solvent and defect densities on the electronic structure of CNTs. Further the reasons for different values of the reduction and oxidation
potential, which are found in literature were explained. For the future this information will allow a better selection of the spectroscopic method to determine the band edges of carbon nanotubes. The spectroelectrochemical analysis of the (6,5)-SWNTs in the solvent water and especially the determination of the kinetics for the observed irreversible reaction gave insight in the interaction between water molecules and carbon nanotubes. These results are particularly important, when carbon nanotubes are used as electrode material. For example in the electrochemical and photolytic generation of hydrogen and oxygen of water. Besides the covalent bond forming reaction of (6,5)-SWNTs in water under anodic potential and optical excitation, the non-covalent bonding reaction between ferrocene molecules and SWNTs was shown and analysed. The different impact of these two interaction on the electronic structure could then be demonstrated and explained.
|
5 |
Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren / Spectroelectrochemical investigation of semiconducting carbon nanotubesHartleb, Holger Edgar Heinz Erich January 2015 (has links) (PDF)
Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandlücke besitzt und der in der Literatur geprägte Begriff der Elektrochemischen Bandlücke aufgrund einer fehlenden allgemeingültigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandlücke. Dies wurde auf die diffusionskontrollierte Löschung der Exzitonen an Ladungszentren zurückgeführt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden Änderungen der elektronischen Eigenschaften diskutiert.
Neben SWNTs wurden die Übergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, über den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zurückgeführt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet.
In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode für die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefelsäure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten. / The main focus of this work was on spectroelectrochemical studies of semiconducting SWNTs. For the first time, absorption and photoluminescence spectra of one and the same sample were recorded simultaneous under electrochemical control of the potential. It was shown, that the optical method has a significant influence on the resulting band gap. Therefore, the term electrochemical band gap, which has developed in literature, is problematic due to a missing general definition. Photoluminescence measurements yield the smallest band gap in comparison to Raman or absorption measurements. This was attributed to the diffusion limited quenching of excitons at charges. Furthermore, the optical spectra of charged SWNTs were analysed and the underlying electronic changes were discussed.
In addition to SWNTs, the transition metal dichalcogenides MoS2 and WS2 were studied with spectroelectrochemical methods as well. Striking, when compared to the measurements of SWNTs, was the broad potential range during which the decrease of the excitonic signals could be observed. This can be attributed to the different electronic structures of TMDs and SWNTs and the small amount of mono layers in the TMD samples. Under the influence of charges it was furthermore possible to observe a signal in the absorption spectra, which points to the formation of trions.
In the last part of this work an electrochemical cell for the investigation of hydrogen production at metallic SWNT electrodes was developed and tested. The activation procedure of SWNTs with sulphuric acid, which was published by Das et al., was successfully reproduced, and a catalytic effect on the hydrogen production by the SWNTs was observed.
|
6 |
Elektrochemie supramolekularer Systeme cyclovoltammetrische und spektroelektrochemische Untersuchungen an 4,4'-Bipyridin und 2,7-Diazapyren enthaltende Wirt- und anionischen Gastverbindungen /Uebe, Jochen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Duisburg.
|
7 |
Příprava a charakterizace nanomateriálů pro elektrochemické ukládání energie / Preparation and characterization of nanomaterials for electrochemical energy storageBouša, Milan January 2017 (has links)
Graphene research is nowadays one of the worldwide most prominent fields of interest in material science due to many extraordinary properties of graphene and related materials. However, the different techniques of synthesis and subsequent handling and/or treatment have a substantial impact on the properties of the graphene and thus a lot of efforts have been focused on developing of the advanced methods for graphene preparation and characterization. Graphene can be easily produced by oxidation and consequent exfoliation of the bulk graphite; however, resulting graphene oxide needs to be reduced back to graphene-like structure due to partial restoration of sp2 network. Herein, a detailed study of the structural evolution of the graphene oxide during electrochemical treatment has been performed using X-ray photoelectron, Raman and infrared spectroscopies and the results were compared with non-oxidized graphene nano-platelets. Additionally, graphene oxide in composite with LiFePO4 olivine material, which is electrochemically almost inactive in a freshly made state, has been tested by repeated electrochemical cycling. Using various electrochemical methods, the progressive electrochemical activity enhancement has been observed and spontaneous graphene reduction was identified as responsible for this...
|
8 |
1,3,5-Triferrocenyl-2,4,6-tris(ethynylferrocenyl)-benzene – a new member of the family of multiferrocenyl-functionalized cyclic systemsPfaff, Ulrike, Filipczyk, Grzegorz, Hildebrandt, Alexander, Korb, Marcus, Lang, Heinrich 19 September 2014 (has links) (PDF)
The consecutive synthesis of 1,3,5-triferrocenyl-2,4,6-tris(ethynylferrocenyl)benzene (6c) is described using 1,3,5-Cl3-2,4,6-I3-C6 (2) as starting compound. Subsequent Sonogashira C,C cross-coupling of 2 with FcC[triple bond, length as m-dash]CH (3) in the molar ratio of 1 : 4 afforded solely 1,3,5-Cl3-2,4,6-(FcC[triple bond, length as m-dash]C)3-C6 (4c) (Fc = Fe(η5-C5H4)(η5-C5H5)). However, when 2 is reacted with 3 in a 1 : 3 ratio a mixture of 1,3,5-Cl3-2-(FcC[triple bond, length as m-dash]C)-4,6-I2-C6 (4a) and 1,3,5-Cl3-2,4-(FcC[triple bond, length as m-dash]C)2-6-I-C6 (4b) is obtained. Negishi C,C cross-coupling of 4c with FcZnCl (5) in the presence of catalytic amounts of [Pd(CH2C(CH3)2P(tC4H9)2)(μ-Cl)]2 gave 1,3-Cl2-5-Fc-2,4,6-(FcC[triple bond, length as m-dash]C)3-C6 (6a), 1-Cl-3,5-Fc2-2,4,6-(FcC[triple bond, length as m-dash]C)3-C6 (6b) and 1,3,5-Fc3-2,4,6-(FcC[triple bond, length as m-dash]C)3-C6 (6c) of which 6b is the main product. Column chromatography allowed the separation of these organometallic species. The structures of 4a,b and 6a in the solid state were determined by single crystal X-ray diffractometry showing a π–π interacting dimer (4b) and a complex π–π pattern for 6a. The electrochemical properties of 4a–c and 6a–c were studied by cyclic voltammetry (=CV) and square wave voltammetry (=SWV). It was found that the FcC[triple bond, length as m-dash]C-substituted benzenes 4a–c show only one reversible redox event, indicating a simultaneous oxidation of all ferrocenyl units, whereby 4c is most difficult to oxidise (4a, E°′1 = 190, ΔEp = 71; 4b, E°′1 = 195, ΔEp = 59; 4c, E°′1 = 390, ΔEp = 59 mV). In case of 4c, the oxidation states 4cn+ (n = 2, 3) are destabilised by the partial negative charge of the electronegative chlorine atoms, which compensates the repulsive electrostatic Fc+–Fc+ interactions with attractive electrostatic Fc+–Clδ− interactions. When ferrocenyl units are directly attached to the benzene C6 core, organometallic 6a shows three, 6b five and 6c six separated reversible waves highlighting that the Fc units can separately be oxidised. UV-Vis/NIR spectroscopy allowed to determine IVCT absorptions (=Inter Valence Charge Transfer) for 6cn+ (n = 1, 2) (n = 1: νmax = 7860 cm−1, εmax = 405 L mol−1 cm−1, Δν1/2 = 7070 cm−1; n = 2: νmax = 9070 cm−1, εmax = 620 L mol−1 cm−1, Δν1/2 = 8010 cm−1) classifying these mixed-valent species as weakly coupled class II systems according to Robin and Day, while for 6a,b only LMCT transitions (=ligand to metal charge transfer) could be detected. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
9 |
Beeinflussung der Metall-Metall-Interaktionen in Ferrocenyl-funktionalisierten PhospholenMiesel, Dominique 16 March 2016 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Synthese Ferrocenyl-funktionalisierter Phosphole und deren elektrochemische sowie spektroelektrochemische Charakterisierung zur Bestimmung der Stärke der Metall-Metall-Wechselwirkungen. Aufgrund der mangelnden Aromatizität stehen das freie Elektronenpaar am Phosphoratom und das dienische System für weitere Reaktionen zur Verfügung. Somit konnten gezielt Modifikationen am heterozyklischen Grundgerüst vorgenommen werden, um dessen elektronische Eigenschaften zu beeinflussen.
Ein Schwerpunkt der Arbeit lag im Aufbau eines Phospholsystems mit Ferrocenyl-substituenten in 2- und 5-Position des Heterozyklus. Weiterhin wurden die Auswirkungen auf die elektronischen Eigenschaften des Moleküls nach chemischer Oxidation des Phosphoratoms von PIII zu PV mit Schwefel und Selen untersucht. Ein weiterer Schwerpunkt lag in der Synthese von Übergangsmetallkomplexen des 2,5-Diferrocenyl-1-phenyl-1H-phosphols, um den Einfluss des Phosphoratoms und des dienischen Systems auf die elektronische Wechselwirkung der Ferrocenylgruppen genauer zu untersuchen und die elektronischen Eigenschaften gezielt zu beeinflussen. In weiteren Arbeiten wurden räumlich anspruchsvolle Substituenten am Phosphoratom zur Veränderung der Geometrie der pyramidalen Phosphorumgebung und somit zur Erhöhung der Delokalisierung im Heterozyklus eingeführt. Die Phosphole mit räumlich anspruchsvollen Gruppen zeigten die größte Metall-Metall-Wechselwirkung der Fc/Fc+-Gruppen über den Phospholring.
|
10 |
The adsorption of thiophenol on gold - a spectroelectrochemical studyHolze, Rudolf 24 February 2016 (has links) (PDF)
The adsorbate formed by adsorption of thiophenol on a polycrystalline gold electrode and brought into contact with aqueous solutions of 1 M HClO4 and 0.1 M KClO4 has been studied using cyclic voltammetry and surface-enhanced Raman spectroscopy. A strong adsorption is deduced from observations made using cyclic voltammetry. From the SER spectra, interactions of thiophenol with the gold surface via a gold–sulfur bond with the aromatic ring pointing away from the surface is concluded for both electrolyte solutions. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0591 seconds