• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spigot capacity of dense medium cyclones

Magwai, Mohloana Kwena 22 April 2008 (has links)
Dense medium cyclones are used extensively in the mineral processing industry to beneficiate various minerals including coal, diamonds and iron ore, amongst others. According to Reeves (2002), .the cyclone has been installed in over one-quarter of the coal preparation plants worldwide.. Dense medium cyclones have the ability to achieve high capacities, and simultaneously obtain sharp separations and high separation efficiencies. However, this piece of equipment does have a shortcoming in that its capacity is constrained by the solids carrying capacity of the spigot. This is termed the spigot capacity. There is uncertainty on whether the spigot capacities specified by DSM (Dutch State Mines), the original developers of the dense medium cyclone, can be increased or not, and how these capacities were determined. The purpose of this study is to establish a methodology to determine the spigot capacities of dense medium cyclones, and determine the parameters that influence these capacities. In order to illustrate the significance of increasing the capacity of dense medium cyclones, the following coal example is used: In 2005, South Africa produced about 245Mt of coal valued at R35.86 billion. A significant proportion of this coal is beneficiated through dense medium cyclones. Therefore, an increase in the cyclone capacity, even if relatively small, represents a large number in terms of tonnages of coal produced or monetary gains. It has been established clearly in this investigation that the maximum spigot capacity is reached at the onset of roping. A critical sinks ore concentration at which spigot overloading occurs has been observed. The simplest and best indicator of possible spigot overloading has been established to be the sinks ore concentration, measurement of this parameter could, however, prove challenging on most industrial cyclones. Further, spigot overloading of a dense medium cyclone can be detected visually by observing the discharge type at the sinks and monitoring particle misplacement to the floats stream. A regression model that quantifies the spigot capacity, in terms of ore and slurry, has been developed. Various parameters were considered in the model, these include: cyclone geometry, feed head, medium density, and medium grade. Parameters that influence the spigot capacity of dense medium cyclones have been established, and their effect on the spigot capacity has been quantified. The spigot capacity values obtained in this investigation were compared with those specified by DSM, and it was concluded that there is large potential to increase the .spigot capacities. specified by DSM. / Dissertation (MEng (Metallurgical))--University of Pretoria, 2008. / Materials Science and Metallurgical Engineering / unrestricted
2

Zuverlässige numerische Berechnungen mit dem Spigot-Ansatz / Reliable numerical computations with spigot approach

Do, Dang-Khoa 24 November 2006 (has links) (PDF)
Der Spigot-Ansatz ist eine elegante Vorgehensweise, spezielle numerische Werte zuverlässig, effizient und mit beliebiger Genauigkeit zu berechnen. Die Stärke des Ansatzes ist seine Effizienz, seine totale Korrektheit und seine mathematisch exakt begründete Sicherstellung einer gewünschten absoluten Genauigkeit. Seine Schwäche ist möglicherweise die eingeschränkte Anwendbarkeit. Es gibt in der Literatur Spigot-Berechnung für e und pi. Wurzelberechnung und Logarithmenberechnung gehören zu den Hauptergebnissen der Dissertation. In Kombination mit den Methoden der Reihentransformation von Zeilberger und Wilf bzw. von Gosper ist der Einsatz zur Berechnung von hypergeometrischen Reihen sehr Erfolg versprechend. Eine interessante offene Frage ist die Berechnung der Feigenbaumkonstanten mit dem Ansatz. 'Spigot' bedeutet 'sukzessive Extraktion von Wertanteilen': die Wertanteile werden extrahiert, als ob sie durch einen Hahn (englisch: spigot) gepumpt werden. Es ist dabei besonders interessant, dass in bestimmten Fällen ein Wert-Anteil mit einer Ziffer der Kodierung des Ergebnisses versehen werden kann. Der Spigot-Ansatz steht damit im Gegensatz zu den konventionellen Iterationsverfahren: in einem Schritt des Spigot-Ansatzes wird jeweils ein Wert-Anteil 'extrahiert' und das gesamte Ergebnis ist die Summe der Wert-Anteile; während ein Schritt in einem Iterationsverfahren die Berechnung eines besseren gesamten Ergebnisses aus dem des vorigen Schritt beinhaltet. Das Grundschema der Berechnung mit dem Spigot-Ansatz sieht folgendermaßen aus: zuerst wird für den zu berechnenden numerischen Wert eine gut konvergierende Reihe mit rationalen Gliedern durch symbolisch-algebraische Methoden hergeleitet; dann wird für eine gewünschte Genauigkeit eine Teilsumme ausgewählt; anschließend werden aus der Teilsumme Wert-Anteile iterativ extrahiert. Die Extraktion von Wert-Anteilen aus der Teilsumme geschieht mit dem Spigot-Algorithmus, der auf Sale zurück geht, nur Integer-Arithmetik benötigt und sich als eine verallgemeinerte Form der Basis-Konvertierung dadurch auffassen lässt, dass die Teilsumme als die Kodierung des Wertes in einer inhomogenen Basis interpretiert wird. Die Spigot-Idee findet auch in der Überführung einer Reihe in eine besser konvergierende Reihe auf der Art und Weise Anwendung, dass Wert-Anteile aus der Reihe extrahiert werden, um die originale Reihe werttreu zur Reihe der Wert-Anteile zu transformieren. Dies geschieht mit den Methoden der Reihentransformation von Gosper bzw. Wilf. Die Dissertation umfasst im Wesentlichen die Formalisierung des Spigot-Algorithmus und der Gosperschen Reihentransformation, eine systematische Darstellung der Ansätze, Methoden und Techniken der Reihenentwiclung und Reihentransformation (die Herleitung von Reihen mit Hilfe charakteristischer Funktionalgleichungen; Methoden der Reihentransformation von Euler, Kummer, Markoff, Gosper, Zeilberger und Wilf) sowie die Methoden zur Berechnung von Wurzeln und Logarithmen mit dem Spigot-Ansatz. Es ist interessant zu sehen, wie sich die Grundideen des Spigot-Algorithmus, der Wurzelberechnung und der Logarithmenberechnung jeweils im Wesentlichen durch eine Gleichung ausdrücken lassen. Es ist auch interessant zu sehen, wie sich verschiedene Methoden der Reihentransformation auf einige einfache Grundideen zurückführen lassen. Beispiele für den Beweis von totalen Korrektheit (bei iterativer Berechnung von Wurzeln) könnte auch von starkem Interesse sein. Um die Zuverlässigkeit anderer Methoden zur Berechnung von natürlichen Logarithmen zu überprüfen, scheint der Vergleich der Ergebnisse mit den des Spigot-Ansatzes die beste Methode zu sein. Anders als bei Wurzelberechnung kann hierbei zur Überprüfung die inverse Berechnung nicht angewandt werden. / spigot, total correctness, acceleration of series, computation of roots, computation of logarithms Reliable numerical computations with spigot approach Spigot approach is an elegant way to compute special numerical values reliably, efficiently and with arbitrary accuracy. The advantage of this way are its efficiency and its total correctness including the bounding of the absolute error. The disadvantage is perhaps its restricted applicableness. There are spigot computation for e an pi. The computation of roots and logarithms belongs to the main results of this thesis. In combination with the methods for acceleration of series by Gosper as well as by Zeilberger and Wilf is the use for numerical summation of hypergeometric series very promising. An interesting open question is the computation of the Feigenbaum constant by this way. ‘Spigot’ means ‘successive extraction of portions of value’: the portions of value are ‘extracted’ as if they were pumped through a spigot. It is very interesting in certain case, where these portions can be interpreted as the digits of the result. With respect to that the spigot approach is the opposition to the iterative approach, where in each step the new better result is computed from the result of the previous step. The schema of spigot approach is characterised as follows: first a series for the value to be computed is derived, then a partial sum of the series is chosen with respect to an desired accuracy, afterwards the portions of value are extracted from the sum. The extraction of potions of value is carried by the spigot algorithm which is due to Sale an requires only integer arithmetic. The spigot algorithm can be understood as a generalisation of radix-conversion if the sum is interpreted as an encoding of the result in a mixed-radix (inhomogeneous) system. The spigot idea is also applied in transferring a series into a better convergent series: portions of value are extracted successively from the original series in order to form the series of extracted potions which should have the same value as the original series. This transfer is carried with the methods for acceleration of series by Gosper and Wilf. The thesis incorporates essentially the formalisation of the spigot algorithm and the method of Gosper for acceleration of series, a systematisation of methods and techniques for derivation and acceleration of series (derivation of series for functions by using their characteristic functional equations; methods for acceleration of series by Euler, Kummer, Markov, Gosper Zeilberger and Wilf) as well as the methods for computation of roots and logarithms by spigot approach. It is interesting to see how to express the basic ideas for spigot algorithm, computation of roots and computation of logarithm respectively in some equations. It is also interesting to see how to build various methods for acceleration of series from some simple basic ideas. Examples for proof of total correctness (for iterative computation of roots) can be of value to read. Comparing with the results produced by spigot approach is possibly the best way for verifying the reliability of other methods for computation of natural logarithms, because (as opposed to root computing) the verification by inverse computation is inapplicable.
3

Zuverlässige numerische Berechnungen mit dem Spigot-Ansatz

Do, Dang-Khoa 20 September 2005 (has links)
Der Spigot-Ansatz ist eine elegante Vorgehensweise, spezielle numerische Werte zuverlässig, effizient und mit beliebiger Genauigkeit zu berechnen. Die Stärke des Ansatzes ist seine Effizienz, seine totale Korrektheit und seine mathematisch exakt begründete Sicherstellung einer gewünschten absoluten Genauigkeit. Seine Schwäche ist möglicherweise die eingeschränkte Anwendbarkeit. Es gibt in der Literatur Spigot-Berechnung für e und pi. Wurzelberechnung und Logarithmenberechnung gehören zu den Hauptergebnissen der Dissertation. In Kombination mit den Methoden der Reihentransformation von Zeilberger und Wilf bzw. von Gosper ist der Einsatz zur Berechnung von hypergeometrischen Reihen sehr Erfolg versprechend. Eine interessante offene Frage ist die Berechnung der Feigenbaumkonstanten mit dem Ansatz. 'Spigot' bedeutet 'sukzessive Extraktion von Wertanteilen': die Wertanteile werden extrahiert, als ob sie durch einen Hahn (englisch: spigot) gepumpt werden. Es ist dabei besonders interessant, dass in bestimmten Fällen ein Wert-Anteil mit einer Ziffer der Kodierung des Ergebnisses versehen werden kann. Der Spigot-Ansatz steht damit im Gegensatz zu den konventionellen Iterationsverfahren: in einem Schritt des Spigot-Ansatzes wird jeweils ein Wert-Anteil 'extrahiert' und das gesamte Ergebnis ist die Summe der Wert-Anteile; während ein Schritt in einem Iterationsverfahren die Berechnung eines besseren gesamten Ergebnisses aus dem des vorigen Schritt beinhaltet. Das Grundschema der Berechnung mit dem Spigot-Ansatz sieht folgendermaßen aus: zuerst wird für den zu berechnenden numerischen Wert eine gut konvergierende Reihe mit rationalen Gliedern durch symbolisch-algebraische Methoden hergeleitet; dann wird für eine gewünschte Genauigkeit eine Teilsumme ausgewählt; anschließend werden aus der Teilsumme Wert-Anteile iterativ extrahiert. Die Extraktion von Wert-Anteilen aus der Teilsumme geschieht mit dem Spigot-Algorithmus, der auf Sale zurück geht, nur Integer-Arithmetik benötigt und sich als eine verallgemeinerte Form der Basis-Konvertierung dadurch auffassen lässt, dass die Teilsumme als die Kodierung des Wertes in einer inhomogenen Basis interpretiert wird. Die Spigot-Idee findet auch in der Überführung einer Reihe in eine besser konvergierende Reihe auf der Art und Weise Anwendung, dass Wert-Anteile aus der Reihe extrahiert werden, um die originale Reihe werttreu zur Reihe der Wert-Anteile zu transformieren. Dies geschieht mit den Methoden der Reihentransformation von Gosper bzw. Wilf. Die Dissertation umfasst im Wesentlichen die Formalisierung des Spigot-Algorithmus und der Gosperschen Reihentransformation, eine systematische Darstellung der Ansätze, Methoden und Techniken der Reihenentwiclung und Reihentransformation (die Herleitung von Reihen mit Hilfe charakteristischer Funktionalgleichungen; Methoden der Reihentransformation von Euler, Kummer, Markoff, Gosper, Zeilberger und Wilf) sowie die Methoden zur Berechnung von Wurzeln und Logarithmen mit dem Spigot-Ansatz. Es ist interessant zu sehen, wie sich die Grundideen des Spigot-Algorithmus, der Wurzelberechnung und der Logarithmenberechnung jeweils im Wesentlichen durch eine Gleichung ausdrücken lassen. Es ist auch interessant zu sehen, wie sich verschiedene Methoden der Reihentransformation auf einige einfache Grundideen zurückführen lassen. Beispiele für den Beweis von totalen Korrektheit (bei iterativer Berechnung von Wurzeln) könnte auch von starkem Interesse sein. Um die Zuverlässigkeit anderer Methoden zur Berechnung von natürlichen Logarithmen zu überprüfen, scheint der Vergleich der Ergebnisse mit den des Spigot-Ansatzes die beste Methode zu sein. Anders als bei Wurzelberechnung kann hierbei zur Überprüfung die inverse Berechnung nicht angewandt werden. / spigot, total correctness, acceleration of series, computation of roots, computation of logarithms Reliable numerical computations with spigot approach Spigot approach is an elegant way to compute special numerical values reliably, efficiently and with arbitrary accuracy. The advantage of this way are its efficiency and its total correctness including the bounding of the absolute error. The disadvantage is perhaps its restricted applicableness. There are spigot computation for e an pi. The computation of roots and logarithms belongs to the main results of this thesis. In combination with the methods for acceleration of series by Gosper as well as by Zeilberger and Wilf is the use for numerical summation of hypergeometric series very promising. An interesting open question is the computation of the Feigenbaum constant by this way. ‘Spigot’ means ‘successive extraction of portions of value’: the portions of value are ‘extracted’ as if they were pumped through a spigot. It is very interesting in certain case, where these portions can be interpreted as the digits of the result. With respect to that the spigot approach is the opposition to the iterative approach, where in each step the new better result is computed from the result of the previous step. The schema of spigot approach is characterised as follows: first a series for the value to be computed is derived, then a partial sum of the series is chosen with respect to an desired accuracy, afterwards the portions of value are extracted from the sum. The extraction of potions of value is carried by the spigot algorithm which is due to Sale an requires only integer arithmetic. The spigot algorithm can be understood as a generalisation of radix-conversion if the sum is interpreted as an encoding of the result in a mixed-radix (inhomogeneous) system. The spigot idea is also applied in transferring a series into a better convergent series: portions of value are extracted successively from the original series in order to form the series of extracted potions which should have the same value as the original series. This transfer is carried with the methods for acceleration of series by Gosper and Wilf. The thesis incorporates essentially the formalisation of the spigot algorithm and the method of Gosper for acceleration of series, a systematisation of methods and techniques for derivation and acceleration of series (derivation of series for functions by using their characteristic functional equations; methods for acceleration of series by Euler, Kummer, Markov, Gosper Zeilberger and Wilf) as well as the methods for computation of roots and logarithms by spigot approach. It is interesting to see how to express the basic ideas for spigot algorithm, computation of roots and computation of logarithm respectively in some equations. It is also interesting to see how to build various methods for acceleration of series from some simple basic ideas. Examples for proof of total correctness (for iterative computation of roots) can be of value to read. Comparing with the results produced by spigot approach is possibly the best way for verifying the reliability of other methods for computation of natural logarithms, because (as opposed to root computing) the verification by inverse computation is inapplicable.
4

The Porcelain Groups

Chance, Robert Edward 01 January 1975 (has links)
My background in clay has emphasized the development of technical considerations in functional ceramics as well as the search for personal images. The past two years have seen an emphasis on the exploration of technical areas chosen to lead to the development of a familiarity with techniques and a solidification of statement. The process has nurtured in me the realization that the objects I produce do not represent an attempt to attain an axiom of art but are personal statements developed through an empirical use of forms and images.
5

Zona de Remanso: exercÃcios de permanÃncia / Zona de Remanso: permanence exercises

Filipe AcÃcio Normando 24 February 2017 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / A urgÃncia desta pesquisa parte de uma investigaÃÃo artÃstica acerca da aÃÃo de permanecer na cidade de Fortaleza. A partir do contexto da extrema desigualdade social e das inÃmeras chacinas que ocorreram entre os anos de 2015 e 2016, perÃodo de realizaÃÃo da pesquisa, desenvolvo exercÃcios de permanÃncia no litoral da cidade, mais especificamente a partir dos espigÃes - muros de contenÃÃo construÃdos entre o mar e a cidade. Ao desenvolver tais exercÃcios, cujas reflexÃes estÃo tambÃm presentes nesse texto, concentro-me em conjugar o verbo/procedimento de permanecer. NÃo se trata de um exercÃcio alheio ao corpo. Ao tratar a permanÃncia como um gesto de resistir no espaÃo, que nÃo se fixa, percebo o delicado equilÃbrio entre ir e ficar. / The urgency of this research is based on an artistic investigation about the action of staying in the city of Fortaleza. In the context of the extreme social inequality and the numerous slaughterings that took place between the years 2015 and 2016, during the period of the research, I develop permanence exercises on the coast of the city, more specifically the retaining walls built between the sea and the city. In developing these exercises, whose reflections are also present in this text, I concentrate on conjugating the verb / procedure of permanence. It is not an out of body exercise. In treating permanence as a gesture of resistance in space, which does not settle, I perceive the delicate balance between going and staying.
6

Nosná ocelová konstrukce muzea / Steel Load-bearing Structure of a Museum Exhibition Gallery

Guziur, Martin January 2014 (has links)
Steel load-bearing structure of a museum will serve to exhibit the museum's exhibits and organizing exhibitions for the public. The structure is elliptical in shape with a length of 30 m in direction of the major axis and 22 m in the direction of the minor axis. Construction height is 9 m. There is located gallery structure in the inner part of the museum with access by an internal staircase. The main load-bearing elements of museum structure are designed from steel S235. The roof deck is made from Kingspan panels and cladding consists of laminated safety glass.

Page generated in 0.0375 seconds