• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 16
  • 13
  • 13
  • 13
  • 13
  • 13
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Magnetic Field Sensing with Nitrogen-Vacancy Color Centers in Diamond

Pham, Linh My 07 December 2013 (has links)
In recent years, the nitrogen-vacancy (NV) center has emerged as a promising magnetic sensor capable of measuring magnetic fields with high sensitivity and spatial resolution under ambient conditions. This combination of characteristics allows NV magnetometers to probe magnetic structures and systems that were previously inaccessible with alternative magnetic sensing technologies. This dissertation presents and discusses a number of the initial efforts to demonstrate and improve NV magnetometry. In particular, a wide-field CCD based NV magnetic field imager capable of micron-scale spatial resolution is demonstrated; and magnetic field alignment, preferential NV orientation, and multipulse dynamical decoupling techniques are explored for enhancing magnetic sensitivity. The further application of dynamical decoupling control sequences as a spectral probe to extract information about the dynamics of the NV spin environment is also discussed; such information may be useful for determining optimal diamond sample parameters for different applications. Finally, several proposed and recently demonstrated applications which take advantage of NV magnetometers' sensitivity and spatial resolution at room temperature are presented, with particular focus on bio-magnetic field imaging. / Engineering and Applied Sciences
22

Electron spin resonance (ESR) spectroscopy of low-dimensional spin systems

Arango, Yulieth Cristina 14 June 2011 (has links) (PDF)
The research in low-dimensional (low-D) quantum spin systems has become an arduous challenge for the condensed matter physics community during the last years. In systems with low dimensional magnetic interactions the exchange coupling is restricted to dimensions lower than the full three-D exhibited by the bulk real material. The remarkable interest in this field is fueled by a continuous stream of striking discoveries like superconductivity, quantum liquid and spin gap states, chiral phases, etc, derived from the strong effect of quantum fluctuations on the macroscopic properties of the system and the competition between electronic and magnetic degrees of freedom. The main goal of the current studies is to reach a broad understanding of the mechanisms that participate in the formation of those novel ground states as well as the characteristic dependence with respect to relevant physical parameters. In this thesis we present the results of an Electron Spin Resonance (ESR)-based study on different quasi-1D spin systems, exemplifying the realization of 1D-magnetic spin-chains typically containing transition metal oxides such as Cu2+ or V4+. The local sensitivity of the ESR technique has been considered useful in exploring magnetic excitation energies, dominant mechanisms of exchange interactions, spin fluctuations and the dimensionality of the electron spin system, among others. Aside from ESR other experimental results, e.g., magnetization and nuclear magnetic resonance besides some theoretical approaches were especially helpful in achieving a proper understanding and modeling of those low-D spin systems. This thesis is organized into two parts: The first three chapters are devoted to the basic knowledge of the subject. The first chapter is about magnetic exchange interactions between spin moments and the effect of the crystal field potential and the external magnetic field. The second chapter is a short introduction on exchange interactions in a 1D-spin chain, and the third chapter is devoted to ESR basics and the elucidation of dynamic magnetic properties from the absorption spectrum parameters. The second part deals with the experimental results. In the fourth chapter we start with the magnetization results from the zero-dimensional endohedral fullerene Dy3N@C80. This system is seemingly ESR “silent” at the frequency of X-band experiments. The fifth chapter shows an unexpected temperature dependence of the anisotropy in the homometallic ferrimagnet Na2Cu5Si4O14 containing alternating dimer-trimer units in the zig-zag Cu-O chains. In the sixth chapter different magnetic species in the layer structure of vanadium oxide nanotubes (VOx-NT) have been identified, confirming earlier magnetization measurements. Moreover the superparamagnetic-like nature of the Li-doped VOx-NT samples was found to justify its ferromagnetic character at particular Li concentration on the room temperature scale. In the seventh chapter the Li2ZrCuO4 system is presented as a unique model to study the influence of additional interactions on frustrated magnetism. The eighth chapter highlights the magnetic properties of the pyrocompound Cu2As2O7. The results suggest significant spin fluctuations below TN. The thesis closes with the summary and the list of references.
23

Crystal lattice vibrations and their coupling with magnetic correlations and orbital ordering in MSb2O6 (M = Cu, Co) = Vibrações na rede cristalina e seu acoplamento com correlações magnéticas e ordenamento orbital em MSb2O6 (M = Cu, Co) / Vibrações na rede cristalina e seu acoplamento com correlações magnéticas e ordenamento orbital em MSb2O6 (M = Cu, Co)

Maimone, Damaris Tartarotti, 1992- 05 December 2016 (has links)
Orientador: Eduardo Granado Monteiro da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T21:58:12Z (GMT). No. of bitstreams: 1 Maimone_DamarisTartarotti_M.pdf: 16410863 bytes, checksum: e2b11832e16df32d41492b82c0b5768d (MD5) Previous issue date: 2016 / Resumo: Os antiferromagnetos de baixa dimensionalidade CuSb2O6 e CoSb2O6 foram investigados com espectroscopia Raman polarizada. Foram obtidas informações sobre as propriedades mag- néticas intrigantes e configurações orbitais. Pode-se fazer a atribuição dos modos fonônicos na fase alta simetria tetragonal para ambos compostos. Para o CuSb2O6, uma transição estrutural a TS = 397(3) K manifesta-se através da observação de um novo modo fonônico em ? 670 cm?1 e por uma grande anomalia na frequência do modo em ? 640 cm?1 na fase de baixa simetria monoclínica, evidenciando uma hibridização aumentada das cadeias lineares de Cu-O-O-Cu como resultado de ordenamento orbital dos elétrons 3d do Cu abaixo de TS. Foi observada uma pronunciada forma de linha assimétrica Fano e comportamentos anômalos para a frequência e largura de linha como função da temperatura para o modo A1g em ? 515 cm?1 para o composto CuSb2O6, indicando um forte acoplamento deste modo com excitações eletrônicas (possivelmente orbitais). Finalmente, ambos os compostos apresentam anomalias de frequência na maioria dos fônons abaixo de ? 100 K que foram interpretados em termos de acoplamento spin-fônon, produzindo informações pertinentes sobre as correlações de curto alcance de baixa dimensionalidade spin-spin. Demonstrou-se, portanto, que espectroscopia Raman fonônica é uma ferramenta valiosa para investigar magnetos de baixa-dimensionalidade / Abstract: The low-dimensional antiferromagnets CuSb2O6 and CoSb2O6 were investigated by polarized phonon Raman spectroscopy, providing insights into their intriguing magnetic properties and orbital configurations. An assignment of the observed phonon modes in the high-symmetry tetragonal phase was performed for both compounds. For CuSb2O6, a structural transition at TS = 397(3) K is manifested by the observation of a new phonon mode at ? 670 cm?1 and by a large frequency anomaly of a mode at ? 640 cm?1 in the low-symmetry monoclinic phase, evidencing an enhanced hybridization of the Cu-O-O-Cu linear chains as a result of orbital ordering of Cu 3d electrons below TS. Pronounced asymmetric Fano lineshape and anomalous frequency and linewidth behavior with temperature were observed for the ? 515 cm?1 A1g mode for CuSb2O6, indicating a strong coupling of this mode with electronic (possibly orbital) excitations. Finally, both compounds show frequency anomalies in most phonons below ? 100 K that were interpreted in terms of the spin-phonon coupling, yielding relevant informa- tion on the low-dimensional short-range spin-spin correlations. Phonon Raman spectroscopy is therefore demonstrated to be a valuable tool to investigate low-dimensional magnets / Mestrado / Física / Mestra em Física / 132659/2015-8 / CNPQ
24

Etude théorique et numérique de quelques modèles stochastiques en physique statistique / Theoretical and numerical study of a few stochastic models of statistical physics

Fathi, Max 03 December 2014 (has links)
Dans cette thèse, nous nous intéressons essentiellement à trois sujets : les inégalités fonctionnelles à contenu probabiliste, les limites hydrodynamiques pour les systèmes de spins continus en interaction et la discrétisation des équations différentielles stochastiques. Ce document, outre l'introduction, comporte trois parties. La première s'intéresse aux inégalités fonctionnelles, et notamment aux inégalités de Sobolev logarithmiques, pour les mesures canoniques, ainsi qu'aux limites hydrodynamiques pour les systèmes des spins continus. La convergence vers la limite hydrodynamique pour plusieurs variantes du modèle de Ginzburg--Landau équipé de la dynamique de Kawasaki y est obtenue, avec notamment des bornes quantitatives en le nombre de spins. On y étudie également la convergence de l'entropie microscopique vers l'entropie hydrodynamique. La deuxième partie étudie les liens entre flots gradients dans les espaces de mesures de probabilités et grandes déviations pour les suites de lois de solutions d'équations différentielles stochastiques. On y obtient l'équivalence entre le principe de grandes déviations et la Gamma-Convergence d'une suite de fonctionnelles apparaissant dans la formulation en flots gradients du flot de marginales des lois des solutions des équations différentielles stochastiques. Comme application de ce principe, on obtient les grandes déviations par rapport à la limite hydrodynamique pour deux variantes du modèle de Ginzburg--Landau. La troisième partie concerne la discrétisation des équations différentielles stochastiques. On y prouve une inégalité transport-Entropie pour la loi du schéma d'Euler explicite. Cette inégalité implique des bornes sur les intervalles de confiance pour l'estimation de quantités de la forme $\mathbb{E}[f(X_T)]$. On y étudie également l'erreur de discrétisation pour l'évaluation des coefficients de transport avec l'algorithme MALA (qui est une combinaison du schéma d'Euler explicite et de l'algorithme de Metropolis--Hastings). / In this thesis, we are mainly interested in three topics : functional inequalities and their probabilistic aspects, hydrodynamic limits for interacting continuous spin systems and discretizations of stochastic differential equations. This document, in addition to a general introduction (written in French), contains three parts. The first part deals with functional inequalities, especially logarithmic Sobolev inequalities, for canonical ensembles, and with hydrodynamic limits for continuous spin systems. We prove convergence to the hydrodynamic limit for several variants of the Ginzburg--Landau model endowed with Kawasaki dynamics, with quantitative bounds in the number of spins. We also study convergence of the microscopic entropy to its hydrodynamic counterpart. In the second part, we study links between gradient flows in spaces of probability measures and large deviations for sequences of laws of solutions to stochastic differential equations. We show that the large deviations principle is equivalent to the Gamma--Convergence of a sequence of functionals that appear in the gradient flow formulation of the flow of marginals of the laws of the diffusion processes. As an application of this principle, we obtain large deviations from the hydrodynamic limit for two variants of the Ginzburg-Landau model. The third part deals with the discretization of stochastic differential equations. We prove a transport-Entropy inequality for the law of the explicit Euler scheme. This inequality implies bounds on the confidence intervals for quantities of the form $\mathbb{E}[f(X_T)]$. We also study the discretization error for the evaluation of transport coefficients with the Metropolis-Adjusted Langevin algorithm (which is a combination of the explicit Euler scheme and the Metropolis algorithm).
25

Método de Monte Carlo para Sistemas Quânticos / Monte Carlo method for quantum systems

Sauerwein, Ricardo Andreas 14 December 1995 (has links)
As propriedades do estado fundamental do modelo de Heisenberg antiferroinagnético quântico de spin-1/2 na rede quadrada e na rede cúbica espacialmente anisotrópica são investigadas através de um novo método de Monte Carlo, baseado na estimativa do maior autovalor de uma matriz de elementos não negativos. A energia do estado fundamental e a magnetização \"staggered\" destes sistemas são calculadas em redes relativamente grandes com até 24 x 24 sítios para o caso de redes quadradas e 8 x 8 x 8 sítios para o caso de redes cúbicas. O método desenvolvido também pode ser usado como um novo algoritmo para a determinação direta da entropia de sistemas de spins de Ising através de simulações usuais de Monte Carlo. Usando este método, calculamos a entropia do antiferromagneto de Ising na presença de um campo magnético externo nas redes triangular e cúbica de face centrada. / The ground state properties of the antiferromagnetic quantum Heisenberg model with spin-112 defined on a square lattice and on a cubic lattice with spatial anisotropy are investigated through a new Monte Carlo method, based on the estimation of the largest eigenvalue of a matrix with nonnegative elements. The ground state energy and the staggered magnetization of these systems are calculated in relatively large lattices with up to 24 x 24 sites for the square lattices and 8 x 8 x 8 sites for cubic lattices. The method developped can also be used as a new algorithm for the direct determination of the entropy of Ising spin systems through ordinary Monte Car10 simulations. By using this method we calculate the entropy of the Ising antiferromagnetic in the presence of a magnetic field in the triangular and face centered cubic lattices.
26

Método de Monte Carlo para Sistemas Quânticos / Monte Carlo method for quantum systems

Ricardo Andreas Sauerwein 14 December 1995 (has links)
As propriedades do estado fundamental do modelo de Heisenberg antiferroinagnético quântico de spin-1/2 na rede quadrada e na rede cúbica espacialmente anisotrópica são investigadas através de um novo método de Monte Carlo, baseado na estimativa do maior autovalor de uma matriz de elementos não negativos. A energia do estado fundamental e a magnetização \"staggered\" destes sistemas são calculadas em redes relativamente grandes com até 24 x 24 sítios para o caso de redes quadradas e 8 x 8 x 8 sítios para o caso de redes cúbicas. O método desenvolvido também pode ser usado como um novo algoritmo para a determinação direta da entropia de sistemas de spins de Ising através de simulações usuais de Monte Carlo. Usando este método, calculamos a entropia do antiferromagneto de Ising na presença de um campo magnético externo nas redes triangular e cúbica de face centrada. / The ground state properties of the antiferromagnetic quantum Heisenberg model with spin-112 defined on a square lattice and on a cubic lattice with spatial anisotropy are investigated through a new Monte Carlo method, based on the estimation of the largest eigenvalue of a matrix with nonnegative elements. The ground state energy and the staggered magnetization of these systems are calculated in relatively large lattices with up to 24 x 24 sites for the square lattices and 8 x 8 x 8 sites for cubic lattices. The method developped can also be used as a new algorithm for the direct determination of the entropy of Ising spin systems through ordinary Monte Car10 simulations. By using this method we calculate the entropy of the Ising antiferromagnetic in the presence of a magnetic field in the triangular and face centered cubic lattices.
27

Electron spin resonance studies of frustrated quantum spin systems

Kamenskyi, Dmytro 24 June 2013 (has links) (PDF)
Since the last few decades frustrated spin systems have attracted much interest. These studies are motivated by the rich variety of their unusual magnetic properties and potential applications. In this thesis, excitation spectra of the weakly coupled dimer system Ba3Cr2O8, the spin-1/2 chain material with distorted diamond structure Cu3(CO3)2(OH)2 (natural mineral azurite), and the quasi-twodimensional antiferromagnet with triangle spin structure Cs2CuBr4 have been studied by means of high-field electron spin resonance. Two pairs of gapped modes corresponding to transitions from a spin-singlet ground state to the first excited triplet state with zero-field energy gaps, of 19.1 and 27 K were observed in Ba3Cr2O8. The observation of ground-state excitations clearly indicates the presence of a non-secular term allowing these transitions. Our findings are of crucial importance for the interpretation of the field-induced transitions in this material (with critical fields Hc1 = 12.5 T and Hc2 = 23.6 T) in terms of the magnon Bose-Einstein condensation. The natural mineral azurite, Cu3(CO3)2(OH)2, has been studied in magnetic fields up to 50 T, revealing several modes not observed previously. Based on the obtained data, all three critical fields were identified. A substantial zero-field energy gap, Δ = 9.6 K, has been observed in Cs2CuBr4 above the ordering temperature. It is argued that contrary to the case for the isostructural Cs2CuCl4, the size of the gap can not be explained solely by the uniform Dzyaloshinskii-Moriya interaction, but it is rather the result of the geometrical frustration stabilizing the spin-disordered state in Cs2CuBr4 in the close vicinity of the quantum phase transition between a spiral magnetically ordered state and a 2D quantum spin liquid.
28

Some Unconventional Phases And Phase Transitions In Condensed Matter : Spin-Nematics, Spin-Liquids, Deconfined Critical Points And Graphene NIS Junctions

Bhattacharjee, Subhro 07 1900 (has links) (PDF)
Condensed matter physics provides us with an opportunity to explore a large variety of systems with diverse properties. Central to the understanding of these systems is a characterization of the nature of their ground states and low energy excitation. Often, such systems show various forms of emergent properties that are absent in the microscopic level. Identification of such emergent phases of condensed matter form an important avenue of research in the field. In this thesis example of such phases and their associated phase transitions have been studied. The work presented here may be broadly divided into two themes: construction of the theoretical framework for understanding materials already studied experimentally, and, trying to provide new theoretical avenues which may be relevant for understanding future experiments. In these studies we shall explore some unconventional phases and phase transitions that may occur in condensed matter systems. A comprehensive understanding of the properties of such unconventional phases and phase transitions is important in the context of the large array of experimentally studied materials that regularly defy conventional wisdom in more than one way. The thesis consists of two distinct parts. In the first part we study three problems in frustrated magnets. The second part consists of studies of the tunnelling spectroscopy of metal-insulator-superconductor junctions in graphene. Studies in frustrated magnets have opened up the possibility of existence of a whole range of phases beyond the already known magnetically ordered ones. Some of these new phases, like the spin nematic or the valence bond solid, display some other conventional order themselves. Others, like the much sort after spin liquid phases displays a whole new kind of order that cannot be captured through the celebrated Landau’s classification of phases on the basis of symmetry breaking and associated order parameters. The phase transitions in these systems are also equally interesting and lead to intriguing possibilities that demand new modes of analysis. In this part of the thesis we shall study the different properties of three magnets with spin-1/2, 1 and 3/2 respectively. We start by providing an introduction to frustrated spin systems in Chapter [1]. The origin of antiferromagnetic interactions in Mott insulators is discussed and the concept of frustration of magnetic interaction is explained. We also point out the causes that may destroy magnetic order in spin systems, particularly the role of quantum fluctuations in presence or absence of magnetic frustration. This is followed with a brief outline of various magnetically ordered and disordered ground states with particular emphasis on the description of the later. We also give a brief outline of various properties of such phases and associated quantum phase transitions particularly noting the influences of quantum interferences encoded in the Berry phase terms. A brief description of the finite temperature properties is also provided. We end an outline of various experimentally relevant compounds that requires comprehensive understanding, some of which have been addressed in this thesis. In Chapter [2] we study the properties of a spin-nematic state in context of the recently discovered spin-1 Mott insulator Nickel Gallium Sulphide (NiGa2S4). This isotropic triangular lattice compound shows no spin ordering till low temperatures. We propose that it may have a particular type of spin-nematic ground state and explain the experimentally observed properties of the compound on the basis of our proposal. Starting from a two band Hubbard model description, relevant for the compound, we derive the Bilinear Biquadratic spin Hamiltonian. We then show, within mean field theory, that this Hamiltonian describes a transition from the spiral state to a ferro-nematic state as a function of the ratio of bilinear and biquadratic couplings. We also study the possible effects of small pinning disorder andmagnetic field and suggest experiments that can possibly distinguish the proposed nematic state from others. In Chapter [3] we explore the effects of the magneto-elastic coupling in the spin-3/2 B-site chromite spinel Cadmium Chromite (CdCr2O4). In this compound the spins form a pyrochlore lattice. Nearest neighbour spins interact antiferromagnetically. Due to frustration the system does not order at low temperatures and instead goes into a classical spin liquid state. Such a cooperative paramagnet is very susceptible to external perturbations which may relieve their frustration. In CdCr2O4, at lower temperatures the magnetic frustration is relieved by distorting the lattice through a first order magnetoelastic transition. Thus the compound presents a case where the relevant perturbation to the frustrated spin interactions is provided by spin-phonon coupling. An effect of such perturbations on a cooperative paramagnet is of general interest and all aspects of this are not understood presently. We take the initial step of characterizing the spin-phonon interaction in detail. Based on recent sound velocity experiments, we construct a microscopic theory for the sound velocity renormalization due to the spin-phonon coupling and explain the recent experimental data obtained by S. Zherlitsyn et al. using our theory we can explain the dependence of the sound velocity on temperature as well as magnetic field. We also construct a Landau theory to explain (qualitatively) the behaviour of sound velocity across the magneto-structural transition. Further, we discuss the effects due to the small Dzyaloshinskii-Moriya interaction that may be present in these compounds. In Chapter [4] we study the possibility of a direct second order quantum phase transition from spiral to dimer phase in two dimensional antiferromagnets. Such transitions between phases with incompatible symmetries are forbidden within conventional Landau Ginzburg-Wilson paradigm of critical phenomena. Early works showed that when the spiral is destroyed by long wavelength fluctuations a fractionalized Z2 spin liquid is obtained. In this work we show an alternative way–the quantum destruction of the spiral magnet. We argue that, when the defects of the spiral phase proliferate and condense, their associated Berry phase automatically leads to dimerization. We apply our theory to study concrete lattice models where such transitions may be observed. This transition is an example of a Landau forbidden deconfined quantum phase transition. The proposed critical theory is naturally written in terms of fractional degrees of freedom which emerge right at the critical point. These fractional particles interact with each other through emergent gauge fields and are deconfined right at the critical point (but are confined in either of the two adjoining phases). We argue, based on existing results, that the monopoles of the gauge field are dangerously irrelevant right at the critical point rendering the later noncompact. The critical point is characterized by an emergent global U (1) conservation law that is absent in the microscopic model, a typical feature of a deconfined quantum critical point. The resultant field theory belongs to the class of anisotropic NCCP3 class which may be studied numerically in future to understand its critical properties. In modern condensed matter physics the emergence of new and novel phases of matter have often been associated with the presence of strong correlations. Indeed, strongly correlated systems seem to harbour in them the potential to realize some of the most unconventional and exotic emergent phases of matter. However in graphene, which is a single layer of graphite, the emergence of novel properties, as present experiments suggest, is due to its unique band structure and not a fallout of intricate correlation effects. Band structure studies of graphene suggest that the material is a zero gap semiconductor with the low energy excitations resembling massless Dirac quasi-particles. The consequence of this is immediate and interesting. It has lead to the possibility of exploring the physics of relativistic fermions in two spatial dimensions and much of this has been studied with great vigour in the last five years. In our studies, presented in Chapter [5], we explore one of the many consequence of this emergent Dirac structure of the low energy quasi-particles, namely the properties of metal-insulator-superconductor junctions of graphene. The twin effect of Klein tunneling of Dirac fermions (and associated transmission resonances) and Andreev reflection (both specular and retro) sets them aside from their conventional counterparts. The graphene normal metal-insulator-superconductor (NIS) junctions show strikingly different properties like oscillations in the sub-gap tunneling conductance as a function of both barrier strength and width. We make a detailed study of this for arbitrary barrier strengths and widths with and without Fermi-surface mismatch between the normal and the superconducting sides. The amplitude of these oscillations are maximum for aligned Fermi surface and vanishes for large Fermi surface mismatch. We provide an understanding for this unconventional behaviour of graphene NIS junctions. We also suggest experimental tests for our theory. Such experimental verification will reveal one more remarkable emergent property in a condensed matter system.
29

Electron spin resonance (ESR) spectroscopy of low-dimensional spin systems

Arango, Yulieth Cristina 29 April 2011 (has links)
The research in low-dimensional (low-D) quantum spin systems has become an arduous challenge for the condensed matter physics community during the last years. In systems with low dimensional magnetic interactions the exchange coupling is restricted to dimensions lower than the full three-D exhibited by the bulk real material. The remarkable interest in this field is fueled by a continuous stream of striking discoveries like superconductivity, quantum liquid and spin gap states, chiral phases, etc, derived from the strong effect of quantum fluctuations on the macroscopic properties of the system and the competition between electronic and magnetic degrees of freedom. The main goal of the current studies is to reach a broad understanding of the mechanisms that participate in the formation of those novel ground states as well as the characteristic dependence with respect to relevant physical parameters. In this thesis we present the results of an Electron Spin Resonance (ESR)-based study on different quasi-1D spin systems, exemplifying the realization of 1D-magnetic spin-chains typically containing transition metal oxides such as Cu2+ or V4+. The local sensitivity of the ESR technique has been considered useful in exploring magnetic excitation energies, dominant mechanisms of exchange interactions, spin fluctuations and the dimensionality of the electron spin system, among others. Aside from ESR other experimental results, e.g., magnetization and nuclear magnetic resonance besides some theoretical approaches were especially helpful in achieving a proper understanding and modeling of those low-D spin systems. This thesis is organized into two parts: The first three chapters are devoted to the basic knowledge of the subject. The first chapter is about magnetic exchange interactions between spin moments and the effect of the crystal field potential and the external magnetic field. The second chapter is a short introduction on exchange interactions in a 1D-spin chain, and the third chapter is devoted to ESR basics and the elucidation of dynamic magnetic properties from the absorption spectrum parameters. The second part deals with the experimental results. In the fourth chapter we start with the magnetization results from the zero-dimensional endohedral fullerene Dy3N@C80. This system is seemingly ESR “silent” at the frequency of X-band experiments. The fifth chapter shows an unexpected temperature dependence of the anisotropy in the homometallic ferrimagnet Na2Cu5Si4O14 containing alternating dimer-trimer units in the zig-zag Cu-O chains. In the sixth chapter different magnetic species in the layer structure of vanadium oxide nanotubes (VOx-NT) have been identified, confirming earlier magnetization measurements. Moreover the superparamagnetic-like nature of the Li-doped VOx-NT samples was found to justify its ferromagnetic character at particular Li concentration on the room temperature scale. In the seventh chapter the Li2ZrCuO4 system is presented as a unique model to study the influence of additional interactions on frustrated magnetism. The eighth chapter highlights the magnetic properties of the pyrocompound Cu2As2O7. The results suggest significant spin fluctuations below TN. The thesis closes with the summary and the list of references.
30

High-field electron spin resonance in low-dimensional spin systems

Ozerov, Mykhaylo 14 June 2011 (has links) (PDF)
Due to recent progress in theory and the growing number of physical realizations, low-dimensional quantum magnets continue to receive a considerable amount of attention. They serve as model systems for investigating numerous physical phenomena in spin systems with cooperative ground states, including the field-induced evolution of the ground-state properties and the corresponding rearrangement of their low-energy excitation spectra. This work is devoted to systematic studies of recently synthesized low-dimensional quantum spin systems by means of multi-frequency high-field electron spin resonance (ESR) investigations. In the spin- 1/2 chain compound (C6H9N2)CuCl3 [known as (6MAP)CuCl3] the striking incompatibility with a simple uniform S = 1/2 Heisenberg chain model employed previously is revealed. The observed ESR mode is explained in terms of a recently developed theory, revealing the important role of the alternation and next-nearest-neighbor interactions in this compound. The excitations spectrum in copper pyrimidine dinitrate [PM·Cu(NO3)2(H2O)2]n, an S = 1/2 antiferromagnetic chain material with alternating g-tensor and Dzyaloshinskii-Moriya interaction, is probed in magnetic fields up to 63 T. To study the high field behavior of the field-induced energy gap in this material, a multi-frequency pulsed-field ESR spectrometer is built. Pronounced changes in the frequency-field dependence of the magnetic excitations are observed in the vicinity of the saturation field, B ∼ Bs = 48.5 T. ESR results clearly indicate a transition from the soliton-breather to a spin-polarized state with magnons as elementary excitations. Experimental data are compared with results of density matrix renormalization group calculations; excellent agreement is found. ESR studies of the spin-ladder material (C5H12N)2CuBr4 (known as BPCB) completes the determination of the full spin Hamiltonian of this compound. ESR results provide a direct evidence for a pronounced anisotropy in this compound, that is in contrast to fully isotropic spin-ladder model employed previously for BPCB. Our observations can be of particular importance for describing the rich temperature-field phase diagram of this material. The frequency-field diagram of magnetic excitations in the quasi-two dimensional S = 1/2 compound [Cu(C4H4N2)2(HF2)]PF6 in the AFM-ordered state is studied. The AFM gap is observed directly. Using high-field magnetization and ESR results, parameters of the effective spin-Hamiltonian (exchange interaction, anisotropy and g-factor) are obtained and compared with those estimated from thermodynamic properties of this compound.

Page generated in 0.0509 seconds