Spelling suggestions: "subject:"spinvalve"" "subject:"spinivalva""
21 |
O transistor válvula de spin de AlGaAs/GaAs e outros semicondutores: dirigido a novos dispositivos spintrônicos / The spin valve transistor of AlGaAs/GaAs and others semiconductors: dirested to movel spintromic devicesEdgar Fernando Aliaga Ayllon 26 November 2013 (has links)
Neste trabalho, apresentamos estudos de magnetotransporte em um sistema quase tridimensional de elétrons produzido em amostras contendo poços quânticos parabólicos (PQW, Parabolic Quantum Well ) formados em heteroestruturas de AlGaAs crescidos sobre substratos de GaAs pela técnica de epitaxia por feixe molecular (MBE). Na primeira parte do nosso trabalho realizamos medidas de magnetoresistência, efeito Hall e efeito Shubnikov-de Haas em PQWs com larguras de 1000 Å a fim de investigar as propriedades eletronicas tais como a concentração e a mobilidade dos elétrons nas amostras. Através de cálculos autoconsistentes determinou-se os perfis de potencial, os níveis de energia e as concentrações de cada uma das sub-bandas ocupadas no poço. Uma análise através da transformada de Fourier também permitiu determinar as concentrações eletrônicas nas sub-bandas. Em uma segunda parte estudou-se a influência da aplicação de potenciais externos através de uma porta metálica com barreira em uma amostra contendo um PQW de largura 3000 Å na presença de campos magnéticos perpendicular e paralelo à superfície da amostra. Encontrou-se que para uma tensão de porta de Vg = 0, 55V forma-se uma barreira de potencial ainda sem ter depleção de cargas no poço. Apresenta-se a idealização do dispositivo transistor válvula de spin, a partir do fato que aplicando uma tensão de porta é possível deslocar espacialmente os elétrons e mudar a sua orientaçãp de spin. / Results from magnetic transport studies made on quasi-three-dimensional electron systems are presented in this work. AlGaAs heterostructures grown on GaAs subtrates through molecular beam epitaxy (MBE) enable the existence of this type of systems by means of parabolic quantum wells (PQW) formation. This work was developed in two main parts. First, we studied magnetoresistence phenomena, such as Hall effect and Shubnikov-de Haas, on 1000 Å width PQWs. This permits to know the electronic concentration and mobility values of this type of samples, among other electrical properties. Then, self-consistent calculations gave an outline of the size and shape of the potentials, and gave the values for the energy levels and the electronic concentration on each occupied sub-band of the quantum well. Through Fourier transform analysis was also possible to obtain and confirm the electronic concentrations of the occupied sub-bands. In the second part of the work, we studied the effects of applying an external potential through a barrier gate to a 3000 Å width PQW sample in the presence of magnetic fields parallel and perpendicular to the sample surface. For a V g = 0, 55 V gate voltage, it was found that a potential barrier was formed even without charge depletion in the well. An idealization for the spin valve transistor device, based on the fact that applying a gate potential spatially dislocates the electrons and changes their spin orientation, is presented.
|
22 |
Dynamique de l'aimantation dans des oscillateurs à vortex / Magnetization dynamics in nanocontact vortex based oscillatorsMiguel Ochoa de Zuazola, Ruben 16 July 2013 (has links)
Cette thèse décrit le comportement dynamique des vortex magnétiques dans une structure comprenant un nanocontact sur une multicouche magnétique dans la configuration vanne de spin. Notre approche a couvert des aspects expérimentaux principalement basés sur des mesures électriques cryogéniques micro-ondes, et des aspects théoriques analytiques basés sur le formalisme de Thiele ainsi que des aspects théoriques numériques par le biais de simulations micromagnétiques. La première partie du travail a été consacrée à la compréhension de la dynamique hyperfréquence d'un vortex situé dans la couche ferromagnétique libre, lorsque le couple de transfert de spin met le vortex en mouvement gyrotropique permanent autour du nanocontact. La seconde partie du travail a été consacrée à la compréhension du processus de nucléation du vortex telle qu'induite par la combinaison du champ Ampérien et du transfert de spin. La dépendance de la nucléation envers température et indirectement envers en champ d'anisotropie d'échange a été étudiée, et modélisé en validant l'hypothèse de la création d'un paire vortex-antivortex dans la couche piégée de la vanne de spin. / This thesis describes the dynamical behavior of a magnetic vortex structure occuring in a system comprising a nano-contact on a magnetic multilayer which is in the spin valve configuration. Our approach covered experimental aspects mainly based on cryogenic microwave measurements, together with analytical theory based on the formalism of Thiele and numerical modeling through micromagnetic simulations. The first part of the work was devoted to the understanding of the microwave dynamics of a vortex located in the ferromagnetic free layer, when the spin transfer torque puts the vortex in permanent gyrotropic motion about the nanocontact. The second part of the work was devoted to the understanding of the process of the nucleation of a vortex, as induced by the combination of Ampére field and spin transfer torques. In the pinned layer, the dependence of the nucleation on the temperature and indirectly on the exchange bias field has been studied. It has been modelled by the creation of a vortex-antivortex pair in the pinned layer of the spin valve.
|
23 |
Magnetic State Detection in Magnetic Molecules Using Electrical CurrentsSaygun, Turab January 2015 (has links)
A system with two magnetic molecules embedded in a junction between non-magnetic leads was studied. In this system electrons tunnel from the localized energy level in region one to the localized energy level in region two generating a flow of electric charge through the quantum dot system. The current density and thus the conductance changes depending on the molecular spin moment. In this work we studied molecules with either spin "up" or spin "down" and with symmetric coupling strengths. The results indicate that the coupling strength between energy level and molecule together with the tunneling rate through the insulating layer play a major role when switching from parallel to anti-parallel molecular spin, for a specific combination of the coupling strength and tunneling rate we could observe a decrease in the current by 99.7% in the non-gated system and 99.4% in the gated system.
|
24 |
Pulsed Laser Ablated Dilute Magnetic Semiconductors and Metalic Spin ValvesGhoshal, Sayak January 2013 (has links) (PDF)
Spintronics (spin based electronics) is a relatively new topic of research which is important both from the fundamental and technological point of view. In conventional electronics charge of the electron is manipulated and controlled to realize electronic devices. Spintronics uses charge as well as the spin degree of freedom of electrons, which is completely ignored in the charge based devices. This new device concept brings in a whole new set of device possibilities with potential advantages like higher speed, greater efficiency, non-volatility, reduced power consumption etc. The first realization of the spintronic device happened in 1989, owing to the discovery of the Giant Magneto-resistive (GMR) structure showing a large resistance change by the application of an external magnetic field. Nobel Prize in Physics is awarded for this discovery in 2007. In less than ten years, such devices moved from the lab to commercial devices, as read head sensors in hard disc drives. This new sensor led to an unprecedented yearly growth in the area l density of bits in a magnetic disc drive. Since 2005, another spintronic device known as Magnetic Tunnel Junction (MTJ) which shows a better performance replaced the existing GMR structures in the read heads. Another device which can potentially replace Si based Dynamic Random Access Memory (DRAM) is Magneto-resistive Random Access Memory (MRAM). Being magnetic it is non-volatile, which means not only it retains its memory with the power turned off but also there is no constant power required for frequent refreshing. This can save a lot of power(~ 10-15 Watts in a DRAM), which is quite significant amount for any portable device which runs under battery. Prototype of a commercial MRAM is also made during 2004-2005 by Infineon and Freescale Semiconductors. Recent development has shown switching of magnetic moment by spin-polarised currents (known as spin transfer torque), electric fields, and photonic fields. Instead of Oersted field switching in the conventional MRAM devices, spin torque effect can also be used to switch a magnetic element more efficiently. Recently Spin-Torque MRAM has gained lot of interest due to it’s less power consumption during the writing process. A continuous research effort is going on in realizing other proposed spintronic devices, such as Spin Torque Oscillator, Spin Field Effect Transistor , Race Track Memory etc. which are yet to get realized or yet to make their entry in the commercial devices.
Spintronics can be divided in to two broad subfields viz.(1) Semiconductor Spintronics and (2) Metallic Spintronics. Most of the devices belong to the second class whereas the former one is rich in fundamental science and not yet cleared its path towards the world of application. Any spintronic device requires ferromagnetic material which is generally the source of spin polarized electrons. For semiconductor spintronic devices, the main obstacle is the non-existence of the ferromagnetic semiconductor above room temperature (RT). So the development in this direction is very much dependent on the material science research and discovery of novel material systems. Almost a decade back, Dilute Magnetic Semiconductors (DMS) are proposed to behaving RT ferromagnetism. As a result an intense theoretical and experimental research is being carried out since then on these materials. Still a general consensus is lacking both in terms of theory as well as experiment.
There are many methodologies and thin film deposition protocols have been followed by different research groups to realize spintronic device concepts. The deposition techniques such as magnetron sputtering, molecular beam epitaxy have been found very efficient for growing metallic spintronic devices. For semiconductor spintronics especially in the area of Dilute Magnetic Semiconductors (DMS) pulsed laser ablation is also considered to be a viable technique. Even though pulsed laser ablation is a very powerful technique to prepare stoichiometric multi-component oxide films, it’s viability for the growth of metallic films and multilayer is considered to be limited. In this regard, we have used pulsed laser ablation to prepare pure and Co doped ZnO films, to examine the magnetic and magneto-transport behavior of these oxides. In addition extensive work has been carried out to optimize and reproducibly prepare metallic multilayer by Pulsed Laser Deposition to realize Spin Valve (SV) effect, which proves the viability of this technique for making metallic multilayer. This thesis deals with the study of Pulsed Laser Deposition(PLD) deposited DMSs and metallic SVs. The thesis is organized into seven chapters as described below:
• Chapter:1
This chapter gives an introduction to Spintronics and the different device structures. It is followed by a brief description of the motivation of the present work. Since magnetism is at the heart of the spintronics, next we attempt to introduce some of the basic concepts in magnetism, which are related to the topics discussed in the following chapters. We discuss about various exchange interactions responsible for the long range ferromagnetic ordering below Curie temperature in different compounds. Other magnetic properties are also discussed. Then another important phenomenon called magnetic anisotropy is brought in. We discuss the origin of different types of anisotropy in materials. These anisotropies are also responsible for magnetic domain formation. Then a description of the different types of domain walls are introduced. Unlike conventional electronics, spintronics deals with spin polarized current. A short description of spin polarization from the band picture and concept of half-metal is introduced.
The next part (Section-I) of this chapter gives an overview of the challenges in semiconductor spintronics. The spin injection efficiency from a ferromagnetic metal to a semiconductor is found to be poor. This problem is attributed to the conductivity mismatch at the interface. DMS materials can be potential candidates in order to solve this problem. Ferromagnetism in these proposed materials cannot be explained in terms of the standard exchange mechanisms. A model was first proposed for the hole doped system based on Zener model. A more apt model for the n-doped high dielectric materials is then proposed based on Bound Magnetic Polarons (BMP). These models for the unusual ferromagnetism are briefly discussed. Although ferromagnetism is observed by different groups, often questions are raised about the intrinsic origin of this behavior and the topic is still under debate. In this study we have tried to correlate the magnetic property with the transport property as the transport properties are generally not affected much by the presence of external impurities and probes the intrinsic property of the material. Transport and the magneto-transport in disordered materials in general are discussed. A specific model proposed for degenerate semiconductors, which is used for fitting our experimental data is explained. As the ferromagnetism in these materials are generally found to be related to the defects, different types of possible defects are described.
Section-II deals with the metallic SV devices. In the history of spintronics, this is one of the most basic and most studied structures, but still having a lot of interest both fundamentally and technologically. A brief history of this discovery and a chronological progress in the device structure is discussed. Our work focuses on the metallic spin valve (SV) structures. Different types of SVs and their properties are explained. In a SV structure one of the ferromagnets (FM) is pinned using an adjuscent antiferromagnetic layer by an effect called exchange bias. A brief description of exchange bias and the effects of different parameters is given. This is followed by a discussion about the theory of GMR which deals with the spin dependent scattering at the bulk and at the interfaces, their relative contributions, effect of the band matching etc. A simple resistor model is used to explain the qualitative behavior of these SVs. The chapter is concluded with a brief summery and applications.
• Chapter:2
This chapter provides a brief description of some of the experimental apparatus that are used to perform various experiments. The chapter is organized according to the general functionality of the techniques. This includes different thin film deposition techniques which are used depending on the requirements and also for comparing the properties of the samples, grown by different techniques. Structural, spectroscopic, magnetic and different microscopy techniques which are extensively used throughout, are discussed and their working principles are explained. This work also involves nano/microstructuring of devices. Mainly two structuring techniques are used viz. e-beam lithography and optical lithography by laser writer. In this section we will be discussing about these two techniques and other associated techniques like lift-off, etching etc. Effect of different parameters on the device structures are highlighted.
• Chapter:3
Chapter-3 deals with the synthesis and characterization of the pure and 5% Co doped ZnO bulk samples. First a brief introduction about the ZnO crystal structure, band structure and other properties are given followed by the synthesis technique followed in our study. Synthesis is done by low temeperature in organic co-precipitation method. This liquid phase synthesis gives better homogeniety. As-grown sample is also sintered at a higher temperature. Structural study confirms the proper synthesis of the intended compound. Spectroscopic as well as magnetic study of the bulk doped sample indicates the presence of Co nano clusters in the low temperature synthesized sample, whereas after sintering indication of Co2+ is observed which reflects in the magnetic property as well. These samples are used as target material for laser ablation.
• Chapter:4
Chapter-4 presents the results of the pure and Co doped ZnO thin film samples. Thin films are grown by PLD method on r-plane Sapphire substrates. Details of the growth technique and the deposition parameters are explained. Our result shows that 5% Co doped ZnO thin film is ferromagnetic in nature as expected in a DMS material, although the film is grown using a paramagnetic target. We also report that pure ZnO grown in an oxygen deficient condition giving ferromagnetic behavior. Not only that, the obtained saturation moment is much higher compared to the Co doped sample. We have demonstrated that the FM can be tuned by tuning the oxygen content and FM disappears when the film is annealed in an oxygen environment .But for the Co doped sample magnetic property could not be tuned much as Co doping stabilizes the surface states. To exclude the possibilities of the extrinsic origin we have done a detailed magneto-transport study for both doped and undoped films. For ZnO, we have shown a one to one correlation of the magnetic and magneto-transport data which further supports the fact that the obtained magnetic behavior is intrinsic. Fitting of the magnetorsistance (MR) data for the pure and Co doped ZnO samples is done using a semi-empirical formula, consisting of both positive and negative MR terms originally proposed for degenerate semiconductors .Excellent agreement of the experimental data is found with the formula. For pure ZnO sample we have extracted the mobility, carrier concentration etc .by Hall measurement. The fabrication steps of Hall bar sample which involves optical lithography and ion beam etching are discussed. 3D e-e interaction induced transport mechanism is found to be dominant in case of oxygen deficient pure ZnO.
• Chapter:5
Chapter-5 demonstrates the tuning of band gap of ZnO by alloying with MgO. By changing the ZnO:MgO ratio in PLD grown films, we could tune the band gap over a wide range. Composition alanalysis is done by Rutherford Back-Scattering. Structural and spectroscopic studies are carried out, which shows tuning of band gap upon alloying with MgO. We could tune ZnO band gap from 3.3eV to 3.92eV by30% MgO alloying, while retaining the Wurtzite crystal structure.
• Chapter:6
Chapter-6 demonstrates the metallic Pseudo Spin Valve (PSV) structures grown by sputtering and by PLD. Main focus of this chapter is to show that, PLD can be aviable technique for making metallic PSV and Spin Valve (SV) structures. This is almost an unexplored technique for growing metallic thin film SVs, as it is evident in the literature. NiFe and Co are used as the soft and hard FM layers respectively, Au and Cu are used as the spacer layer. FeMn is used for pinning the Co layer in case of the SV structures. The first section describes the properties of these materials and then substrate preparation, deposition parameters etc. are explained in details. Properties of sputter deposited PSV structures are also described. Thickness variation of different layers, double PSV structure and angular variation of the MR properties are presented. Generally two measurement geometries are followed for the SV measurements viz.(1) Current In Plane (CIP) and (2) Current Perpendicular to Plane(CPP). We have carried out MR studies in both the measurement geometries. Measurement in CPP geometry is much more involved than CIP and need structuring with multiple lithography steps. CPP measurement geometry scheme and the process steps are discussed. For this measurement a special ac bridge technique is followed which is also discussed.
In the next part we have demonstrated PSV and SV structures, grown, using PLD in an Ultra High Vacuum (UHV) system. Not only that, we have obtained a CIPMR as high as 3.3%. PLD is generally thought to be a technique for oxide deposition and metallic multilayers are not deposited due to particulate formation, high enegy of the adatom species which can lead to inter-mixing at the interface etc. But in this study we have shown that by properly tuning the deposition parameters, it is possible to grow SVs using PLD. We have found the roughness of the PLD grown films are much lower compared to the sputtered films. For top SV structures we have obtained exchange bias even in the absence of applied field during deposition. This effect is observed by performing magnetic and magneto-resistance measurements. Effect of different layer thicknesses, field annealing etc. are discussed. Two different spacer layers are used and their properties are compared. We have found that the interface engineered structures are giving highest MR among the different samples. Then a conclusion of our study is presented followed by a discussion on the difficulties and challenges faced for optimizing the PLD grown SVs.
• Chapter:7
Finally, in Chapter-7, various results are summarized and a broad outlook is given. Perspectives for the continuation of the present work is also given.
|
25 |
Nanoscale investigation of superconductivity and magnetism using neutrons and muonsRay, Soumya Jyoti January 2012 (has links)
The work presented in this thesis was broadly focussed on the investigation of the magnetic behaviour of different superconducting materials in the form of bulk (singe crystals and pellets) and thin films (nanomagnetic devices like superconducting spin valves etc). Neutrons and muons were extensively used to probe the structural and magnetic behaviour of these systems at the nanoscale along with bulk characterisation techniques like high-sensitive magnetic property measurements, scanning probe microscopy and magneto-transport measurements etc. The nanoscale interplay of Superconductivity and Ferromagnetism was studied in the thin film structures using a combination of Polarised Neutron Reflectivity (PNR) and Low Energy Muon Spin Rotation (LE-µSR) techniques while bulk Muon Spin Rotation (µSR) technique was used for microscopic magnetic investigation in the bulk materials. In the Fe/Pb heterostructure, evidence of the Proximity Effect was observed in the form of an enhancement of the superconducting penetration depth (λs) with an increase in the ferromagnetic layer thickness (dF) in both the bilayered and the trilayered structures. The existence of an Inverted Magnetic Region was also detected at the Ferromagnet-Superconductor (F/S) interface in the normal state possibly originating from the induced spin polarisation within the Pb layer in the presence of the neighbouring Fe layer(s). The spatial size (height and width) of the Inverted Magnetic Region did not change much while cooling the sample below the superconducting transition temperature(Tc)and it also stayed unaffected by an increase in the Fe layer thickness and by a change of the applied magnetic field. In the superconducting spin valve structure containing Permalloy (Py) as ferromagnetic layer and Nb as the superconducting layer, LE-µSR measurements revealed the evidence of the decay of magnetic flux density (as a function of thickness) within the Nb layer symmetrically from the Py/Nb interfaces towards the centre of the Nb layer in the normal state. The thickness dependent magnetisation decay occurred over two characteristic length scales in the normal state that stayed of similar values in the superconducting state also. In the superconducting state, an additional contribution towards the magnetisation was found in the vicinity of the Py/Nb interfaces possibly originating from the spin polarisation of the singlet Cooper pairs in these areas. The nanoscale magnetic investigation on a highly engineered F/S/F structure (where each of the F blocks made of multiple Co/Pd layers with magnetic moments aligned perpendicular to the plane of these layers and neighbouring magnetic blocks separated by Ru layers giving rise to antiferromagnetic alignment) using LE-µSR showed an antisymmetric thickness dependent magnetic flux density profile with two characteristic length scales. In the superconducting state, the magnetic flux density profile got modified within the superconducting Nb₆₇Ti₃₃ layer near the F/S interfaces in a way similar to that of observed in the case of Py/Nb system, most likely because of the spin polarisation of the superconducting electron pairs. The vortex magnetic phase diagram of Bi₂Sr₂Ca₂Cu₃O10-δ was studied using the Muon Spin Rotation (µSR) technique to explore the effects of vortex lattice melting and rearrangements for vortex transitions and crossover as a function of magnetic field and temperatures. At low magnetic fields, the flux vortices undergo a first order melting transition from a vortex lattice to a vortex liquid state with increasing temperature while another transition also occurred with increasing field at fixed temperature to a vortex glass phase at the lowest temperatures. Evidence of a frozen liquid phase was found in the intermediate field region at low temperature in the form of a lagoon in the superconducting vortex state which is in agreement with earlier observations made in BiSCCO-2212. The magnetic behaviour of the unconventional superconductor Sr₂RuO₄ was investigated using µSR to find the evidence of normal state magnetism and the nature of the vortex state. In the normal state, a weak hysteretic magnetic signal was detected over a wide temperature and field range believed to be supporting the evidence of a chiral order parameter. The nature of the vortex lattice structure was obtained in different parts of the magnetic phase diagram and the evidence of magnetic field driven transition in the lattice structure was detected from a Triangular→Square structure while the vortex lattice stayed Triangular over the entire temperature region below Tc at low fields with a disappearance of pinning at higher temperatures.
|
26 |
Non-local, local, and extraction spin valves based on ferromagnetic metal/GaAs hybrid structuresManzke, Yori 12 June 2015 (has links)
Im Gebiet der Spin-Elektronik wird der Spin des Elektrons zusätzlich zu seiner Ladung für Bauelementkonzepte ausgenutzt. Hierbei ist die effiziente elektrische Erzeugung einer Spinakkumulation in einem halbleitenden Material von großer Bedeutung. Die Erzeugung der Spinakkumulation kann mithilfe eines ferromagnetischen Metall-Kontaktes erfolgen. Wird eine elektrische Spannung an die Grenzfläche zwischen dem ferromagnetischen Metall und dem Halbleiter so angelegt, dass spinpolarisierte Elektronen vom Metall in den Halbleiter fließen, spricht man von elektrischer Spininjektion. Bei einer Umkehrung der Spannung werden bevorzugt Elektronen der entgegengesetzten Spinorientierung aus dem halbleitenden Material entfernt. Dieser Prozess wird als Spinextraktion bezeichnet. In dieser Arbeit wird die elektrische Erzeugung einer Spinakkumulation in lateral strukturierten, epitaktischen Hybridstrukturen bestehend aus ferromagnetischen Metallkontakten auf n-dotiertem GaAs untersucht. Allgemein ist neben der Spinpolarisation im Ferromagneten auch die spinunabhängige elektrische Charakteristik eines Kontaktes von zentraler Bedeutung für die effiziente Spinerzeugung. Hier wird gezeigt, dass die gewöhnlichen Strom-Spannungs-Kennlinien die Spininjektionseigenschaften dominieren können. Außerdem wird ein neuartiges Bauelementkonzept vorgestellt und experimentell untersucht. Hierbei handelt es sich um ein lokales Spin-Ventil, welches Spinextraktion statt Spininjektion als Spinerzeugungsprozess verwendet. Im Gegensatz zum gewöhnlichen lokalen Spin-Ventil kann ein solches Extraktions-Spin-Ventil als Baustein eines erweiterten Bauelements angesehen werden, welches auf mehreren, aufeinanderfolgenden Extraktionsprozessen beruht. Die Eigenschaften des Extraktions-Spin-Ventils werden diskutiert und es wird gezeigt, wie seine Funktionalität beispielsweise für das Auslesen der Daten in magnetischen Speichern angewendet werden kann. / The efficient electrical generation of a spin accumulation inside a semiconductor (SC) utilizing the interface with a ferromagnetic metal (FM) is essential for the realization of many spintronic device concepts, in which the spin of the electron is exploited in addition to its charge for computational and memory purposes. At FM/n-type SC hybrid contacts, the application of a reverse bias leads to the injection of spin-polarized electrons into the SC. Alternatively, an applied forward bias can be used to generate a spin accumulation of opposite sign due to the extraction of electrons with a particular spin orientation. In this work, the electrical generation and detection of a spin accumulation is studied using epitaxial and laterally structured ferromagnetic metal/n-type GaAs hybrid systems in various measurement geometries. To achieve a high spin generation efficiency, the spinindependent electrical properties of the contact have to be considered in addition to the choice of the injector material with respect to its degree of spin polarization. Here, it is shown that the current-voltage characteristics can even constitute the dominating design parameter with respect to the spin injection properties. In addition, a novel device concept is presented and studied experimentally. This approach essentially relies on spin extraction as the spin generation process in a local spin valve geometry. In contrast to local spin valves based on spin injection, the presented extraction spin valve can be regarded as a building block of an extended device comprising multiple extraction events along the lateral spin transport channel. It is shown how such multiple extraction spin valves allow for an intriguing functionality, which can be used, for example, for the read-out of data in magnetic memory applications.
|
27 |
"Propriedades magnéticas e de spin em semicondutores do grupo III-V" / "Spin and magnetic properties of the III-V group semiconductors"Duarte, Celso de Araujo 19 June 2006 (has links)
Neste trabalho, apresentamos o resultado de nossas investigações em amostras de poços quânticos parabólicos (PQW) de AlGaAs crescidas em substratos de GaAs por MBE (Molecular Beam Epitaxy). Nossos estudos se concentram nas implicações da variação do fator g de Landé ao longo da estrutura dos PQW, a qual ocorre em virtude da dependência dessa grandeza com respeito ao conteúdo de Al na liga AlGaAs. Essas implicações são analisadas através de medidas de transporte eletrônico (medidas de Hall e do efeito Shubnikov-de Haas). As medidas de Subnikov-de Haas a temperaturas da ordem de dezenas a centenas de milikelvin com variação do ângulo de inclinação se mostram um eficiente método para a determinação do fator g. Distinguimos não só o fator g determinado pelas propriedades da liga, como também uma contribuição oriunda de efeitos de muitos corpos (contribuição de troca). Por outro lado, as medidas de Hall nos revelam um comportamento anômalo, que mostramos não ter origem no conhecido "efeito Hall anômalo" presente em materiais ferromagnéticos, nem em efeitos de ocupação de múltiplas sub-bandas. Atribuímos o fenômeno a um efeito "válvula de spin", conseqüente da variação espacial do fator g. Nossas observações nos permitem a idealização de um transistor "válvula de spin", prescindindo do emprego de materiais magnéticos. / We present the results of our investigations concerning MBE grown AlGaAs/GaAs parabolic quantum well (PQW) samples. We focused on the variation of the Landé g factor along the structure of the PQWs, which occur as a consquence of its dependence on the Al content on the alloy AlGaAs. The implications are studied by Hall and Shubnikov-de Haas measurements. Shubnikov-de Haas measurements at temperatures of the order of tenths to hundreds of milikelvin with variation of the tilt angle are shown to be an efficient method for the determination of the g factor. We could distinguish not only the alloy g factor, but its many body contribution (exchange contribution). On the other hand, Hall measurements exhibit an unusual behavior, which we prooved it has no relation neither to the well known "anomalous Hall effect", a characteristic of ferromagnetic materials, nor to a multi subband occupation effect. We atribute such behavior to a "spin valve effect", caused by the spatial variation of the g factor. Our observations allow us to idealize a "spin valve" transistor, without any ferromagnetic material in its structure.
|
28 |
Amorphe weichmagnetische CoFeNiSiB-Detektionsschichten in Spinventilen / Amorphous soft magnetic CoFeNiSiB detection layers in spinvalvesKäufler, Andrea Regina 16 May 2002 (has links)
No description available.
|
29 |
"Propriedades magnéticas e de spin em semicondutores do grupo III-V" / "Spin and magnetic properties of the III-V group semiconductors"Celso de Araujo Duarte 19 June 2006 (has links)
Neste trabalho, apresentamos o resultado de nossas investigações em amostras de poços quânticos parabólicos (PQW) de AlGaAs crescidas em substratos de GaAs por MBE (Molecular Beam Epitaxy). Nossos estudos se concentram nas implicações da variação do fator g de Landé ao longo da estrutura dos PQW, a qual ocorre em virtude da dependência dessa grandeza com respeito ao conteúdo de Al na liga AlGaAs. Essas implicações são analisadas através de medidas de transporte eletrônico (medidas de Hall e do efeito Shubnikov-de Haas). As medidas de Subnikov-de Haas a temperaturas da ordem de dezenas a centenas de milikelvin com variação do ângulo de inclinação se mostram um eficiente método para a determinação do fator g. Distinguimos não só o fator g determinado pelas propriedades da liga, como também uma contribuição oriunda de efeitos de muitos corpos (contribuição de troca). Por outro lado, as medidas de Hall nos revelam um comportamento anômalo, que mostramos não ter origem no conhecido "efeito Hall anômalo" presente em materiais ferromagnéticos, nem em efeitos de ocupação de múltiplas sub-bandas. Atribuímos o fenômeno a um efeito "válvula de spin", conseqüente da variação espacial do fator g. Nossas observações nos permitem a idealização de um transistor "válvula de spin", prescindindo do emprego de materiais magnéticos. / We present the results of our investigations concerning MBE grown AlGaAs/GaAs parabolic quantum well (PQW) samples. We focused on the variation of the Landé g factor along the structure of the PQWs, which occur as a consquence of its dependence on the Al content on the alloy AlGaAs. The implications are studied by Hall and Shubnikov-de Haas measurements. Shubnikov-de Haas measurements at temperatures of the order of tenths to hundreds of milikelvin with variation of the tilt angle are shown to be an efficient method for the determination of the g factor. We could distinguish not only the alloy g factor, but its many body contribution (exchange contribution). On the other hand, Hall measurements exhibit an unusual behavior, which we prooved it has no relation neither to the well known "anomalous Hall effect", a characteristic of ferromagnetic materials, nor to a multi subband occupation effect. We atribute such behavior to a "spin valve effect", caused by the spatial variation of the g factor. Our observations allow us to idealize a "spin valve" transistor, without any ferromagnetic material in its structure.
|
30 |
Influence du spectre électronique et de l'effet paramagnétique sur les propriétés des hétérostructures supraconductrices / Influence of electronic spectra and paramagnetic effect on the properties of superconducting heterostructuresMontiel, Xavier 09 December 2011 (has links)
Les hétérostructures de taille nanométrique comprenant des matériaux supraconducteurs (S) en contact avec des matériaux métalliques (N) ou ferromagnétiques (F) présentent des propriétés surprenantes. L'effet de proximité dans les structures F/S/F se manifeste par l'effet vanne de spin. Dans les jonctions S/F/S, on voit l'apparition d'une transition de phase 0-p. Ces propriétés dépendent des paramètres internes du ferromagnétiques. Dans la première partie, nous étudions l'influence d'un décalage énergétique et d'une différence de masse effective pour expliquer l'effet de vanne de spin inverse qui se manifeste dans certaines hétérostructures F/S/F. On étudie la transition de phase 0-p dans le cas de décalage énergétique et d'anisotropie des surfaces de Fermi.La seconde partie est consacré à l'étude de l'effet paramagnétique sur le diagramme (H,T) des bicouches S/N et S/S. On demontre qu'il se forme une phase de supraconductivité induite par champ magnétique à fort champ magnétique et faibles températures. Calculée en présence d'un phase supraconductrice inhomogène de type Fulde-Ferrell-Larkin-Ovchinikov (FFLO), on s'interesse également à l'influence des impuretés sur cette nouvelle phase supraconductrice à fort champ magnétique.La troisième partie est dévolue à l'étude des multicouches supraconducteur/métal normal(N). Le but de cette partie est d'étudier l'influence du nombre de couche et de décalage d'énergie sur la température critique, la densité d'état des multicouches S/N/.../N épaisses et de l'effet Josephson dans les multicouches S/N/.../N/S. / The atomic-scaled heterostructures with superconducting and ferromagnetic materials exhibit astonishing properties. For example, the proximity effect in the F/S/F sandwiches leads to the spin-valve effect. In the S/F/S junctions, one can observe 0-p phase transiton. These effects depend on the ferromagnetic properties.In the first part, we study the influence of energy shift and effective mass difference to explain the inverse spin valve effect. We also study the 0-p phase diagram and its dependence on the energy shifts and anisotropic sprectra in S/F/S junctions.The second part is devoted to the study of paramagnetic effet on the (H,T) phase diagram of the S/N and S/S bilayers. We demonstrate the formation of a superconducting field induced phase for high magnetic fields and low temperature. Calculated in presence of the superconducting inhomogeneous Fulde-Ferrell-Larkin-Ovchinikov (FFLO) state, we study the influence of the impurities on this new superconducting phase.The last part deals with the study of superconducting-normal metal(N) multilayers. We calculate the influence of the number of layers and energy shift on the density of state, the thermodynamical properties of the S/N/.../N thick multilayer and the Josephson current in the S/N/.../N/S thick junctions.
|
Page generated in 0.0278 seconds