• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Numerical Study of Supersonic Rectangular Jet Impingement and Applications to Cold Spray Technology

Akhtar, Kareem 09 January 2015 (has links)
Particle-laden supersonic jets impinging on a flat surface are of interest to cold gas-dynamic spray technology. Solid particles are propelled to a high velocity through a convergent-divergent nozzle, and upon impact on a substrate surface, they undergo plastic deformation and adhere to the surface. For given particle and substrate materials, particle velocity and temperature at impact are the primary parameters that determine the success of particle deposition. Depending on the particle diameter and density, interactions of particles with the turbulent supersonic jet and the compressed gas region near the substrate surface can have significant effects on particle velocity and temperature. Unlike previous numerical simulations of cold spray, in this dissertation we track solid particles in the instantaneous turbulent fluctuating flow field from the nozzle exit to the substrate surface. Thus, we capture the effects of particle-turbulence interactions on particle velocity and temperature at impact. The flow field is obtained by direct numerical simulations of a supersonic rectangular particle-laden air jet impinging on a flat substrate. An Eulerian-Lagrangian approach with two-way coupling between solid particles and gas phase is used. Unsteady three-dimensional Navier-Stokes equations are solved using a six-order compact scheme with a tenth-order compact filter combined with WENO dissipation, almost everywhere except in a region around the bow shock where a fifth-order WENO scheme is used. A fourth-order low-storage Runge-Kutta scheme is used for time integration of gas dynamics equations simultaneously with solid particles equations of motion and energy equation for particle temperature. Particles are tracked in instantaneous turbulent jet flow rather than in a mean flow that is commonly used in the previous studies. Supersonic jets for air and helium at Mach number 2.5 and 2.8, respectively, are simulated for two cases for the standoff distance between the nozzle exit and the substrate. Flow structures, mean flow properties, particles impact velocity and particles deposition efficiency on a flat substrate surface are presented. Different grid resolutions are tested using 2, 4 and 8 million points. Good agreement between DNS results and experimental data is obtained for the pressure distribution on the wall and the maximum Mach number profile in wall jet. Probability density functions for particle velocity and temperature at impact are presented. Deposition efficiency for aluminum and copper particles of diameter in the range 1 micron to 40 microns is calculated. Instantaneous flow fields for the two standoff distances considered exhibit different flow characteristics. For large standoff distance, the jet is unsteady and flaps both for air (Mach number 2.5) and for helium (Mach number 2.8), in the direction normal to the large cross-section of the jet. Linear stability analysis of the mean jet profile validates the oscillation frequency observed in the present numerical study. Available experimental data also validate oscillation frequency. After impingement, the flow re-expands from the compressed gas region into a supersonic wall jet. The pressure on the wall in the expansion region is locally lower than ambient pressure. Strong bow shock only occurs for small standoff distance. For large standoff distance multiple/oblique shocks are observed due to the flapping of the jet. The one-dimensional model based on isentropic flow calculations produces reliable results for particle velocity and temperature. It is found that the low efficiency in the low-pressure cold spray (LPCS) compared to high-pressure cold spray (HPCS) is mainly due to low temperature of the particles at the exit of the nozzle. Three-dimensional simulations show that small particles are readily influenced by the large-scale turbulent structures developing on jet shear layers, and they drift sideways. However, large particles are less influenced by the turbulent flow. Particles velocity and temperature are affected by the compressed gas layer and remain fairly constant in the jet region. With a small increase in the particles initial temperature, the deposition efficiency in LPCS can be maximized. There is an optimum particle diameter range for maximum deposition efficiency. / Ph. D.
2

Large eddy simulation analysis of non-reacting sprays inside a high-g combustor

Martinez, Jaime, master of science in engineering 04 March 2013 (has links)
Inter-turbine burners are useful devices for increasing engine power. To reduce the size of these combustion devices, ultra-compact combustor (UCC) concepts are necessary. One such UCC concept is the centrifugal-force based high-g combustor design. Here, a model ultra-compact combustor (UCC) with fuel spray injection is simulated using large eddy simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) methodologies to understand mixing and spray dispersion inside centrifugal-based combustion systems. Both non-evaporating and evaporating droplet simulations were carried, as well as the tracking of a passive scalar, to explore this multiphase system. Simulation results show that mixing of fuel and oxidizer is based on a jet-in-crossflow system, with the fuel jet issuing into a circulating oxidizer flow stream. It is seen that a a high velocity vortex-like ring develops in the inner core of the combustor, which has enough momentum to obstruct the path of combustion products. There is minimal fuel droplet and vapor segregation inside the combustor and enhanced turbulent mixing is seen at mid-radius. / text
3

Espectro de gotas geradas por ponta de jato plano de impacto para aplicação aérea na presença de adjuvantes em caldas de pulverização / Droplet spectra generated by deflection flat fan nozzles to aerial application witch adjuvants in spray solutions

Berna, Raquel [UNESP] 24 February 2017 (has links)
Submitted by RAQUEL BERNA null (raquelberna@fca.unesp.br) on 2017-06-06T20:47:10Z No. of bitstreams: 1 Dissertação RAQUEL BERNA-OK.pdf: 1253285 bytes, checksum: dc8e3d42748df8551595e20b82f9ce51 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-06-06T20:52:38Z (GMT) No. of bitstreams: 1 berna_r_me_bot.pdf: 1253285 bytes, checksum: dc8e3d42748df8551595e20b82f9ce51 (MD5) / Made available in DSpace on 2017-06-06T20:52:38Z (GMT). No. of bitstreams: 1 berna_r_me_bot.pdf: 1253285 bytes, checksum: dc8e3d42748df8551595e20b82f9ce51 (MD5) Previous issue date: 2017-02-24 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Por necessidade de maior capacidade de campo operacional durante as aplicações de produtos fitossanitários nas lavouras, a aviação agrícola têm se destacado como uma opção importante para diversas culturas. Porém, para garantir a eficácia da aplicação, alguns fatores devem ser considerados, como a calda, o elemento gerador de gotas e o fluxo de ar, pois estes irão influenciar no espectro de gotas formado e, consequentemente, no risco de ocorrer deriva. O objetivo desta pesquisa foi avaliar a influência de diferentes adjuvantes nas características físicas das caldas contendo fungicida, analisando-se o espectro de gotas formado em função de cada ângulo de deflexão de uma ponta de pulverização aérea CP-03, buscando um indicativo de utilização dessas técnicas quanto à qualidade e segurança das aplicações. Foram avaliadas quatro caldas, sendo uma calda com fungicida, e outras três com as misturas do fungicida com cada um dos adjuvantes: um multifuncional; um óleo vegetal; e um óleo mineral. A aplicação aérea foi simulada através de um ventilador de alta capacidade, com velocidade média de vento de 180 km h-1. Na saída deste ventilador foi acoplada a ponta de pulverização CP-03, e a pulverização foi simulada com taxa de aplicação de 20 L ha-1 e pressão de 200 kPa. Todas as caldas foram pulverizadas com os três ângulos defletores da ponta (30°, 55° e 90°) e o espectro de gotas foi determinado utilizando-se um equipamento analisador de partículas em tempo real posicionado na frente do simulador (VisiSizer portátil - Oxford Lasers Ltd / UK). Entre as caldas que continham o fungicida mais um dos adjuvantes, a calda composta pelo fungicida e o adjuvante multifuncional apresentou os maiores valores de diâmetro mediano volumétrico (DMV) e menores valores percentuais de gotas menores que 100 µm (V100), com todos os ângulos defletores da ponta de pulverização CP-03, posicionando-se como melhor técnica de redução de deriva. A adição de óleo mineral a calda proporcionou o menor valor de DMV e maior valor de V100, quando comparado às outras caldas. Com relação ao potencial de redução do risco de deriva o ângulo defletor de 30°, ofereceu o melhor potencial com todas as caldas avaliadas. / Due to the necessary of a greater operational efficiency during applications of plant health products in crops, agricultural aviation has been an important option for several crops. However, to ensure the effectiveness of the application, some factors must be considered as the spray formulation, the nozzles and the air flow, as these will influence the droplet spectrum formed and, consequently, the risk of spray drift. Based on this subject, the objective of this research was to evaluate the influence of different adjuvants on the physical characteristics of the spray mixture with the behavior of the droplet spectrum formed as a function of each deflection angle of the aerial spray tip CP-03 and to find an indicative of which of them are more suitable for reducing the risk of spray drift. Four spray formulations were evaluated, one spray solution with fungicide, and the other three sprays with a mix of each of the adjuvants containing fungicide, the first one surfactant, the second one mineral oil and the third one a vegetable oil. The aerial application was simulated through a high capacity fan with a high‐speed airstreams of 180 km h-1 . At the outlet of this fan the spray tip CP-03 was coupled, and the spraying was simulated with application rate of 20 L ha -1 and pressure of 200 kPa. All spray formulations were tested by three deflecting angles (30 °, 55 ° and 90 °) and the droplet spectrum was determined using a real-time particle analyzer positioned in front of the simulator (VisiSizer portable - Oxford Lasers Ltd / UK). Between the mixture that contained the fungicide over one of the adjuvants, the mix made by the fungicide and the adjuvant-one presented the highest values of volumetric medianum diameter (VDM) and lower percentage values of droplets smaller than 100 µm (V100), with all deflecting angles tip CP-03, positioning itself as the best technique of reducing spray drift. The addition of mineral oil the mix provided the lowest value of VDM and greater value of V100, when compared to the other mixture. With respect to the potential for reducing the risk of spray drift the deflector angle of 30°, offered the best potential with all the evaluated.
4

Experimental and Numerical Studies on Spray in Crossflow

Sinha, Anubhav January 2016 (has links) (PDF)
The phenomenon of spray in crossflow is of relevance in gas turbine combustor development. The current work focuses on spray in crossflow rather than liquid jet in crossflow from the standpoint of enhancing fuel dispersion and mixing. Specifically, the first part of the work involves study of spray structure, droplet sizing, and velocimetry for sprays of water and ethanol in a crossflow under ambient conditions. Laser-based diagnostic techniques such as Particle/Droplet Image Analysis (PDIA) and Particle Tracking Velocimetry (PTV) are utilized. Using spray structure images, trajectory equations are derived by multi-variable regression. It is found that the spray trajectory depends only on the two-phase momentum ratio and is independent of other flow parameters. A generalized correlation for the spray trajectory is proposed incorporating the liquid surface tension, which is found to be effective for our data, with water and ethanol, as well as data on Jet-A from the literature for a wide variety of operating conditions. An interesting phenomenon of spatial bifurcation of the spray is observed at low Gas-to-Liquid ratios (GLRs). The reason for this phenomenon is attributed to the co-existence of large and highly deformed ligaments along with much smaller droplets at low GLR conditions. The smaller droplets lose their vertical momentum rapidly leading to lower penetration, whereas the larger ligaments/droplets penetrate much more due to their larger momentum leading to a spatial separation of the two streams. The second part of the study focuses on evaporating sprays in preheated crossflow. Experiments are conducted using ethanol, decane, Jet-A1 fuel, and a two-component surrogate for Jet-A1 fuel. The crossflow air is heated up to 418 K and the effect of evaporation is studied on spray trajectory and droplet sizes. Measured droplet sizes and velocities at two successive locations are used to estimate droplet evaporation lifetimes. Evaporation constant for the d2 law derived from the droplet lifetimes represents the first-ever data for the above-mentioned liquids under forced convective conditions. This data can be used to validate multi-component droplet evaporation models. The last part of the study focuses on Large Eddy Simulations (LES) of the spray in crossflow. The near-nozzle spray structure is investigated experimentally to obtain droplet size and velocity distributions that are used as inputs to the computational model. For the spray in crossflow under ambient conditions, trajectory and droplet sizes at different locations are compared with experimental results. While the predicted trajectory is found to be in good agreement with data, the predicted droplet sizes are larger than the measured values. This is attributed to the implicit assumption in the secondary breakup model that the droplets are spherical, whereas the experimental data in the near-nozzle region clearly shows presence of mostly ligaments and non-spherical droplets, especially for the low GLR cases. A modified breakup model is found to lead to improved agreement in droplet sizes between predictions and measurements. Overall, the experiments and computations have provided significant insight into spray in crossflow phenomenon, and have yielded useful results in terms of validated spray trajectory correlations, droplet evaporation lifetimes under forced convective conditions, and a methodology for simulation of airblast sprays.
5

CFD Simulation of Urea Evaporation in STAR-CCM+

Ottosson, Oscar January 2019 (has links)
Diesel engines produce large amounts of nitrogen oxides (NOX) while running. Nitrogen oxides are highly toxic and also contribute towards the formation of tropospheric ozone. Increasingly stringent legislation regarding the amount of nitrogen oxides that are allowed to be emitted from diesel-powered vehicles has forced manufacturers of diesel-engines to develop after-treatment systems that reduce the amount of nitrogen oxides in the exhaust. One of the main components in such a system is selective catalytic reduction (SCR), where nitrogen oxides are reduced to diatomic nitrogen and water with the help of ammonia. A vital part of this process is the spraying of a urea-water-solution (UWS), which is needed in order to produce the reducing agent ammonia. UWS spraying introduces the risk of solid deposits (such as biuret, ammelide and ammeline) forming in the after-treatment system, should the flow conditions be unfavourable. Risk factors include high temperatures, but also low dynamics and high thickness of the resulting liquid film that forms as the UWS spray hits the surfaces of the after-treatment system. It is thus essential that manufacturers of SCR after-treatment systems have correct data on how much UWS that should be sprayed into the exhaust for any given flow condition. Experimental tests are thoroughly used to assess this but are very expensive and are thus limited to prototype testing during product development. When assessing a wider range of concepts and geometries early on in the product development stage, simulation tools such as computational fluid dynamics (CFD) are used instead. One of the most computationally heavy processes to simulate within a SCR after-treatment system is the UWS spray and its interaction with surfaces inside the after-treatment system, where correct prediction of the formation of solid deposits are of great importance. Most CFD models used for this purpose hold a relatively good level of accuracy and are utilized throughout the whole industry where SCR aftertreatment is applied. Despite this, these models are limited in the fact that they are only able to cover timescales in the scope of seconds to minutes while using a tolerable amount of computational power. However, the time spectrum for solid deposit formation is minutes to hours. Scania is one of Sweden’s biggest developers of SCR after-treatment, with the technology being incorporated directly into its silencers. AVL Fire is the main UWS spray simulation tool for engineers at Scania at the moment. One major drawback of using AVL Fire for UWS spray simulations is that it is deemed too time-consuming to set up new cases and too unstable during simulation, which makes it too costly in terms of expensive engineering hours. This project has investigated the potential of using STAR-CCM+ for UWS spray simulations at Scania instead. A standard method has been evaluated, as well as parameters that will prove useful in further investigations of a potential speedup method. The studied method in STAR-CCM+ is easy to setup and the simulation process is robust and stable. Various other perks come from using STAR-CCM+ as well, such as: a user-friendly interface, easy and powerful mesh-generation and great post-process capabilities. Several different parameters have been investigated for their impact on the studied method, such as mesh refinement of the spray injector area and the number of parcels injected every time-step through the spray injector (simply put the resolution of the spray). A possible speedup by freezing the momentum equations when allowed and lowering the amount of inner iterations has also been investigated. A handful of operating conditions have been studied for two different geometries. The attained simulation results display correlations with physical measurements, but further assessment for identifying the risk of solid deposit needs to be performed on the studied cases to assess the full accuracy of solid deposit prediction of the studied method. Recommendations for future work includes fully implementing and evaluating the speedup method available for spray simulations in STAR-CCM+ as well as directly comparing how the accuracy and performance of the method relates to that of the method used in AVL Fire for spray simulations. / Dieselmotorer producerar under körning stora mängder kväveoxider (NOx). Kväve-oxider är starkt giftiga föreningar som även bidrar till att öka mängden marknära ozon. Allt strängare lagstiftning gällande mängden kväveoxider som får släppas ut från fordon med dieselmotorer har lett till att tillverkare av dieselmotorer blivit tvingade att utveckla efterbehandlingssystem som renar avgasen från motorn. En av huvudkomponenterna i ett sådant system idag är selective catalytic reduction (SCR; på svenska selektiv katalytisk reduktion), där kväveoxider omvandlas till kvävgas och vatten med hjälp av ammoniak. För att producera ammoniak används en lösning av urea och vatten (t.ex. AdBlue®), som introduceras till efterbehandlingssystemet via spray. Denna process har dock en stor nackdel, då det under omvandlingsprocessen kan finnas risk för klumpbildning av ämnen som biuret, ammelid och ammelin ifall flödesförhållandena är ogynnsamma. Riskfaktorer för klumpbildning inkluderar höga temperaturer samt låg dynamik och hög tjocklek för den vätskefilm som bildas när sprayen med urea-lösning kommer i kontakt med ytor i efterbehandlingssystemet. Det är därför av stor vikt för tillverkare av efterbehandlingssystem som använder SCR att känna till hur mycket urealösning som kan sprayas in för varje givet flöde. Experimentella tester används till stor del för att utvärdera detta, men är väldigt dyra och kan endast göras för ett fåtal prototyper under en produkts utveckling. För att kunna utvärdera ett större antal koncept och geometrier tidigare i utvecklingsstadiet av en ny produkt används därför ofta datorkraft med simuleringsverktyg som CFD (Computational Fluid Dynamics). En av de mest beräkningstunga processerna att simulera i ett efterbehandlingssystem med SCR är sprayandet av urea-lösning och dess interaktion med ytor, där korrekta förutbestämmelser av huruvida det finns risk för klumpbildning eller inte är av stor betydelse. De flesta CFD modeller som används i detta syfte har förhållandevis god noggrannhet och används i stor utsträckning i den bransch där efterbehandling med SCR tillämpas. Däremot är dessa modeller begränsade i att de endast kan åstadkomma simuleringar (med en acceptabel mängd datorkraft) som sträcker sig i tidsintervallet sekunder till minuter. Bildningen av klump är dock en process som kan ta upp till flera timmar. Scania är en av Sveriges största tillämpare av SCR, då tekniken används i de efterbehandlingssystem som finns inbyggda i tillverkarens ljuddämpare. Scania använder främst AVL Fire för simulering av spray med urea. AVL Fire anses dock vara för tidskrävande vid skapelsen av nya simuleringsfall och för instabilt under simulering. Detta projekt har därför undersökt möjligheten att använda STAR-CCM+ för simulering av spray med urea hos Scania. Den metod i STAR-CCM+ som utvärderats är enkel att använda då nya simuleringsfall ska skapas, samtidigt som den är robust och stabil under simulering. Relevanta parametrar för en potentiell uppsnabbningsmetod har också undersökts. STAR-CCM+ i sin helhet är användarvänligt, där verktyget för att skapa och generera mesh är enkelt att använda såväl som kraftfullt när mer avancerade operationer krävs. Möjligheterna för postprocessing är väldigt smidiga för transienta förlopp, vilket är ett stort plus för simuleringar med urea-spray, vars injektion och resulterande processer är väldigt transienta skeenden i sig. Flera olika parametrar har undersökts, för att granska hur stor påverkan de har på prestandan och noggrannheten hos den studerade metoden. Två av dessa är tätheten av beräkningsnoder i den region där spray-munstycket är placerat samt antalet paket med urea-vatten lösning som injiceras varje tidssteg via spray-munstycket. En möjlig uppsnabbning av metoden, som går ut på att frysa ekvationerna för bevarelse av rörelsemängd (eng - momentum equations) när det är tillåtet och samtidigt minska antalet inre iterationer för varje tidssteg, har också undersökts. Ett flertal olika flödesförhållanden har också undersökts för två olika geometrier. De erhållna resultaten tyder på korrelation med data från fysiska experiment. Dock bör ytterligare hydrodynamiska utvärderingar tillämpas för att ordentligt kunna redogöra för hur väl STAR-CCM+ kan användas för att förutse risken för klump- bildning i en spray-process med urea-vatten lösning. Framtida arbete borde fokusera på att utvärdera den uppsnabbningsmetod som finns för spray-simuleringar i STAR-CCM+, samt direkt jämföra hur väl metodens noggrannhet och prestanda står sig gentemot den metod som används i AVL Fire för spray-simuleringar.

Page generated in 0.2289 seconds