1 |
Transparent reconfigurable architecture for heterogeneous applications / Uma arquitetura reconfigurável transparente para aplicações heterogêneasBeck Filho, Antonio Carlos Schneider January 2008 (has links)
Atualmente, pode-se observar que a Lei de Moore vem estagnando. A freqüência de operação já não cresce da mesma forma, e a potência consumida aumenta drasticamente em processadores de propósito geral. Ao mesmo tempo, sistemas embarcados vêm se tornando cada vez mais heterogêneos, caracterizados por uma grande quantidade de modelos computacionais diferentes, sendo executados em um mesmo dispositivo. Desta maneira, como novas tecnologias que irão substituir totalmente ou parcialmente o silício estão surgindo, novas soluções arquiteturais são necessárias. Apesar de sistemas reconfiguráveis já terem demonstrado serem candidatos em potencial para os problemas supracitados, ganhos significativos de desempenho são alcançados apenas em programas que manipulam dados massivamente, não representando a realidade dos sistemas atuais. Ademais, o seu uso em alta escala ainda está limitado à utilização de ferramentas ou compiladores que, claramente, não mantêm a compatibilidade de software e a reutilização do código binário já existente. Baseando-se nestes fatos, a presente tese propõe uma nova técnica para, utilizando um sistema reconfigurável, otimizar tanto programas orientados a dados como aqueles orientados a controle, sem a necessidade de modificação do código fonte ou binário. Para isto, um algoritmo de Tradução Binária, que trabalha em paralelo ao processador, foi desenvolvido. O mecanismo proposto é responsável pela transformação de seqüências de instruções, em tempo de execução, para serem executadas em uma unidade funcional reconfigurável de granularidade grossa, suportando execução especulativa. Desta maneira, é possível aproveitar as vantagens do uso da lógica combinacional para aumentar o desempenho e reduzir o gasto de energia, mantendo a compatibilidade binária em um processo totalmente transparente. Três diferentes estudos de caso foram feitos: os processadores Java e MIPS R3000 – representando o campo de sistemas embarcados – e o conjunto de ferramentas Simplescalar, que simula um processador superescalar baseado no MIPS R10000 – representando o mercado de processadores de propósito geral. / As Moore’s law is losing steam, one already sees the phenomenon of clock frequency reduction caused by the excessive power dissipation in general purpose processors. At the same time, embedded systems are getting more heterogeneous, characterized by a high diversity of computational models coexisting in a single device. Therefore, as innovative technologies that will completely or partially replace silicon are arising, new architectural alternatives are necessary. Although reconfigurable computing has already shown to be a potential solution for such problems, significant speedups are achieved just in very specific dataflow oriented software, not representing the reality of nowadays systems. Moreover, its wide spread use is still withheld by the need of special tools and compilers, which clearly preclude software portability and reuse of legacy code. Based on all these facts, this thesis presents a new technique using reconfigurable systems to optimize both control and dataflow oriented software without the need of any modification in the source or binary codes. For that, a Binary Translation algorithm has been developed, which works in parallel to the processor. The proposed mechanism is responsible for transforming sequences of instructions at runtime to be executed on a dynamic coarse-grain reconfigurable array, supporting speculative execution. This way, it is possible to take advantage of using pure combinational logic to speed up the execution, maintaining full binary compatibility in a totally transparent process. Three different case studies were evaluated: a Java Processor and a MIPS R3000 – representing the embedded systems field – and the Simplescalar Toolset, a widely used toolset that simulates a superscalar architecture based on the MIPS R10000 processor – representing the general-purpose market.
|
2 |
Multiparty Communication ComplexityDavid, Matei 06 August 2010 (has links)
Communication complexity is an area of complexity theory that studies an abstract model of computation called a communication protocol. In a $k$-player communication protocol, an input to a known function is partitioned into $k$ pieces of $n$ bits each, and each piece is assigned to one of the players in the protocol. The goal of the players is to evaluate the function on the distributed input by using as little communication as possible. In a Number-On-Forehead (NOF) protocol, the input piece assigned to each player is metaphorically placed on that player's forehead, so that each player sees everyone else's input but its own. In a Number-In-Hand (NIH) protocol, the piece assigned to each player is seen only by that player. Overall, the study of communication protocols has been used to obtain lower bounds and impossibility results for a wide variety of other models of computation.
Two of the main contributions presented in this thesis are negative results on the NOF model of communication, identifying limitations of NOF protocols. Together, these results consitute stepping stones towards a better fundamental understanding of this model. As the first contribution, we show that randomized NOF protocols are exponentially more powerful than deterministic NOF protocols, as long as $k \le n^c$ for some constant $c$. As the second contribution, we show that nondeterministic NOF protocols are exponentially more powerful than randomized NOF protocols, as long as $k \le \delta \cdot \log n$ for some constant $\delta < 1$.
For the third major contribution, we turn to the NIH model and we present a positive result. Informally, we show that a NIH communication protocol for a function $f$ can simulate a Stack Machine (a Turing Machine augmented with a stack) for a related function $F$, consisting of several instances of $f$ bundled together. Using this simulation and known communication complexity lower bounds, we obtain the first known (space vs. number of passes) trade-off lower bounds for Stack Machines.
|
3 |
Multiparty Communication ComplexityDavid, Matei 06 August 2010 (has links)
Communication complexity is an area of complexity theory that studies an abstract model of computation called a communication protocol. In a $k$-player communication protocol, an input to a known function is partitioned into $k$ pieces of $n$ bits each, and each piece is assigned to one of the players in the protocol. The goal of the players is to evaluate the function on the distributed input by using as little communication as possible. In a Number-On-Forehead (NOF) protocol, the input piece assigned to each player is metaphorically placed on that player's forehead, so that each player sees everyone else's input but its own. In a Number-In-Hand (NIH) protocol, the piece assigned to each player is seen only by that player. Overall, the study of communication protocols has been used to obtain lower bounds and impossibility results for a wide variety of other models of computation.
Two of the main contributions presented in this thesis are negative results on the NOF model of communication, identifying limitations of NOF protocols. Together, these results consitute stepping stones towards a better fundamental understanding of this model. As the first contribution, we show that randomized NOF protocols are exponentially more powerful than deterministic NOF protocols, as long as $k \le n^c$ for some constant $c$. As the second contribution, we show that nondeterministic NOF protocols are exponentially more powerful than randomized NOF protocols, as long as $k \le \delta \cdot \log n$ for some constant $\delta < 1$.
For the third major contribution, we turn to the NIH model and we present a positive result. Informally, we show that a NIH communication protocol for a function $f$ can simulate a Stack Machine (a Turing Machine augmented with a stack) for a related function $F$, consisting of several instances of $f$ bundled together. Using this simulation and known communication complexity lower bounds, we obtain the first known (space vs. number of passes) trade-off lower bounds for Stack Machines.
|
4 |
Transparent reconfigurable architecture for heterogeneous applications / Uma arquitetura reconfigurável transparente para aplicações heterogêneasBeck Filho, Antonio Carlos Schneider January 2008 (has links)
Atualmente, pode-se observar que a Lei de Moore vem estagnando. A freqüência de operação já não cresce da mesma forma, e a potência consumida aumenta drasticamente em processadores de propósito geral. Ao mesmo tempo, sistemas embarcados vêm se tornando cada vez mais heterogêneos, caracterizados por uma grande quantidade de modelos computacionais diferentes, sendo executados em um mesmo dispositivo. Desta maneira, como novas tecnologias que irão substituir totalmente ou parcialmente o silício estão surgindo, novas soluções arquiteturais são necessárias. Apesar de sistemas reconfiguráveis já terem demonstrado serem candidatos em potencial para os problemas supracitados, ganhos significativos de desempenho são alcançados apenas em programas que manipulam dados massivamente, não representando a realidade dos sistemas atuais. Ademais, o seu uso em alta escala ainda está limitado à utilização de ferramentas ou compiladores que, claramente, não mantêm a compatibilidade de software e a reutilização do código binário já existente. Baseando-se nestes fatos, a presente tese propõe uma nova técnica para, utilizando um sistema reconfigurável, otimizar tanto programas orientados a dados como aqueles orientados a controle, sem a necessidade de modificação do código fonte ou binário. Para isto, um algoritmo de Tradução Binária, que trabalha em paralelo ao processador, foi desenvolvido. O mecanismo proposto é responsável pela transformação de seqüências de instruções, em tempo de execução, para serem executadas em uma unidade funcional reconfigurável de granularidade grossa, suportando execução especulativa. Desta maneira, é possível aproveitar as vantagens do uso da lógica combinacional para aumentar o desempenho e reduzir o gasto de energia, mantendo a compatibilidade binária em um processo totalmente transparente. Três diferentes estudos de caso foram feitos: os processadores Java e MIPS R3000 – representando o campo de sistemas embarcados – e o conjunto de ferramentas Simplescalar, que simula um processador superescalar baseado no MIPS R10000 – representando o mercado de processadores de propósito geral. / As Moore’s law is losing steam, one already sees the phenomenon of clock frequency reduction caused by the excessive power dissipation in general purpose processors. At the same time, embedded systems are getting more heterogeneous, characterized by a high diversity of computational models coexisting in a single device. Therefore, as innovative technologies that will completely or partially replace silicon are arising, new architectural alternatives are necessary. Although reconfigurable computing has already shown to be a potential solution for such problems, significant speedups are achieved just in very specific dataflow oriented software, not representing the reality of nowadays systems. Moreover, its wide spread use is still withheld by the need of special tools and compilers, which clearly preclude software portability and reuse of legacy code. Based on all these facts, this thesis presents a new technique using reconfigurable systems to optimize both control and dataflow oriented software without the need of any modification in the source or binary codes. For that, a Binary Translation algorithm has been developed, which works in parallel to the processor. The proposed mechanism is responsible for transforming sequences of instructions at runtime to be executed on a dynamic coarse-grain reconfigurable array, supporting speculative execution. This way, it is possible to take advantage of using pure combinational logic to speed up the execution, maintaining full binary compatibility in a totally transparent process. Three different case studies were evaluated: a Java Processor and a MIPS R3000 – representing the embedded systems field – and the Simplescalar Toolset, a widely used toolset that simulates a superscalar architecture based on the MIPS R10000 processor – representing the general-purpose market.
|
5 |
Transparent reconfigurable architecture for heterogeneous applications / Uma arquitetura reconfigurável transparente para aplicações heterogêneasBeck Filho, Antonio Carlos Schneider January 2008 (has links)
Atualmente, pode-se observar que a Lei de Moore vem estagnando. A freqüência de operação já não cresce da mesma forma, e a potência consumida aumenta drasticamente em processadores de propósito geral. Ao mesmo tempo, sistemas embarcados vêm se tornando cada vez mais heterogêneos, caracterizados por uma grande quantidade de modelos computacionais diferentes, sendo executados em um mesmo dispositivo. Desta maneira, como novas tecnologias que irão substituir totalmente ou parcialmente o silício estão surgindo, novas soluções arquiteturais são necessárias. Apesar de sistemas reconfiguráveis já terem demonstrado serem candidatos em potencial para os problemas supracitados, ganhos significativos de desempenho são alcançados apenas em programas que manipulam dados massivamente, não representando a realidade dos sistemas atuais. Ademais, o seu uso em alta escala ainda está limitado à utilização de ferramentas ou compiladores que, claramente, não mantêm a compatibilidade de software e a reutilização do código binário já existente. Baseando-se nestes fatos, a presente tese propõe uma nova técnica para, utilizando um sistema reconfigurável, otimizar tanto programas orientados a dados como aqueles orientados a controle, sem a necessidade de modificação do código fonte ou binário. Para isto, um algoritmo de Tradução Binária, que trabalha em paralelo ao processador, foi desenvolvido. O mecanismo proposto é responsável pela transformação de seqüências de instruções, em tempo de execução, para serem executadas em uma unidade funcional reconfigurável de granularidade grossa, suportando execução especulativa. Desta maneira, é possível aproveitar as vantagens do uso da lógica combinacional para aumentar o desempenho e reduzir o gasto de energia, mantendo a compatibilidade binária em um processo totalmente transparente. Três diferentes estudos de caso foram feitos: os processadores Java e MIPS R3000 – representando o campo de sistemas embarcados – e o conjunto de ferramentas Simplescalar, que simula um processador superescalar baseado no MIPS R10000 – representando o mercado de processadores de propósito geral. / As Moore’s law is losing steam, one already sees the phenomenon of clock frequency reduction caused by the excessive power dissipation in general purpose processors. At the same time, embedded systems are getting more heterogeneous, characterized by a high diversity of computational models coexisting in a single device. Therefore, as innovative technologies that will completely or partially replace silicon are arising, new architectural alternatives are necessary. Although reconfigurable computing has already shown to be a potential solution for such problems, significant speedups are achieved just in very specific dataflow oriented software, not representing the reality of nowadays systems. Moreover, its wide spread use is still withheld by the need of special tools and compilers, which clearly preclude software portability and reuse of legacy code. Based on all these facts, this thesis presents a new technique using reconfigurable systems to optimize both control and dataflow oriented software without the need of any modification in the source or binary codes. For that, a Binary Translation algorithm has been developed, which works in parallel to the processor. The proposed mechanism is responsible for transforming sequences of instructions at runtime to be executed on a dynamic coarse-grain reconfigurable array, supporting speculative execution. This way, it is possible to take advantage of using pure combinational logic to speed up the execution, maintaining full binary compatibility in a totally transparent process. Three different case studies were evaluated: a Java Processor and a MIPS R3000 – representing the embedded systems field – and the Simplescalar Toolset, a widely used toolset that simulates a superscalar architecture based on the MIPS R10000 processor – representing the general-purpose market.
|
Page generated in 0.0647 seconds