• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 2
  • 2
  • 2
  • Tagged with
  • 95
  • 95
  • 19
  • 17
  • 15
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Millimetre spectral line mapping observations towards four massive star-forming H ii regions

Li, Shanghuo, Wang, Junzhi, Zhang, Zhi-Yu, Fang, Min, Li, Juan, Zhang, Jiangshui, Fan, Junhui, Zhu, Qingfeng, Li, Fei 05 January 2017 (has links)
We present spectral line mapping observations towards four massive star-forming regions Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 14(0), 14-13(0), (13)) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of C-12/C-13 were derived using HC3N and its C-13 isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (similar to 65). The N-14/N-15 and O-16/O-18 abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the S-33/S-34 ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N( DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 x 10(-5). Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.
62

A CONSTRAINT ON THE FORMATION TIMESCALE OF THE YOUNG OPEN CLUSTER NGC 2264: LITHIUM ABUNDANCE OF PRE-MAIN SEQUENCE STARS

Lim, Beomdu, Sung, Hwankyung, Kim, Jinyoung S., Bessell, Michael S., Hwang, Narae, Park, Byeong-Gon 02 November 2016 (has links)
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T-eff [K] <= 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A(Li)= 3.2 +/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.
63

M STARS IN THE TW HYA ASSOCIATION: STELLAR X-RAYS AND DISK DISSIPATION

Kastner, Joel H., Principe, David A., Punzi, Kristina, Stelzer, Beate, Gorti, Uma, Pascucci, Ilaria, Argiroffi, Costanza 13 June 2016 (has links)
To investigate the potential connection between the intense X-ray emission from young low-mass stars and the lifetimes of their circumstellar planet-forming disks, we have compiled the X-ray luminosities (L-X) of M stars in the similar to 8 Myr old TW Hya Association (TWA) for which X-ray data are presently available. Our investigation includes analysis of archival Chandra data for the TWA binary systems TWA 8, 9, and 13. Although our study suffers from poor statistics for stars later than M3, we find a trend of decreasing L-X/L-bol with decreasing T-eff for TWA M stars, wherein the earliest-type (M0-M2) stars cluster near log(L-X/L-bol) approximate to -3.0 and then log(L-X/L-bol) decreases, and its distribution broadens, for types M4 and later. The fraction of TWA stars that display evidence for residual primordial disk material also sharply increases in this same (mid-M) spectral type regime. This apparent anticorrelation between the relative X-ray luminosities of low-mass TWA stars and the longevities of their circumstellar disks suggests that primordial disks orbiting early-type M stars in the TWA have dispersed rapidly as a consequence of their persistent large X-ray fluxes. Conversely, the disks orbiting the very lowest-mass pre-MS stars and pre-MS brown dwarfs in the Association may have survived because their X-ray luminosities and, hence, disk photoevaporation rates are very low to begin with, and then further decline relatively early in their pre-MS evolution.
64

PROPLYDS AROUND A B1 STAR: 42 ORIONIS IN NGC 1977

Kim, Jinyoung Serena, Clarke, Cathie J., Fang, Min, Facchini, Stefano 20 July 2016 (has links)
We present the discovery of seven new proplyds (i.e., sources surrounded by cometary H alpha emission characteristic of offset ionization fronts (IFs)) in NGC 1977, located about 30' north of the Orion Nebula Cluster (ONC) at a distance of similar to 400 pc. Each of these proplyds is situated at projected distances 0.04-0.27 pc from the B1V star 42 Orionis (c Ori), which is the main source of UV photons in the region. In all cases the IFs of the proplyds are clearly pointing toward the common ionizing source, 42 Ori, and six of the seven proplyds clearly show tails pointing away from it. These are the first proplyds to be found around a B star, with previously known examples instead being located around O stars, including those in the ONC around theta(1) Ori C. The radii of the offset IFs in our proplyds are between similar to 200 and 550 au; two objects also contain clearly resolved central sources that we associate with disks of radii 50-70 au. The estimated strength of the FUV radiation field impinging on the proplyds is around 10-30 times less than that incident on the classic proplyds in the ONC. We show that the observed proplyd sizes are however consistent with recent models for FUV photoevaporation in relatively weak FUV radiation fields.
65

X Marks the Spot: Nexus of Filaments, Cores, and Outflows in a Young Star-forming Region

Imara, Nia, Lada, Charles, Lewis, John, Bieging, John H., Kong, Shuo, Lombardi, Marco, Alves, Joao 15 May 2017 (has links)
We present a multiwavelength investigation of a region of a nearby giant molecular cloud that is distinguished by a minimal level of star formation activity. With our new (CO)-C-12(J = 2-1) and (CO)-C-13(J = 2-1) observations of a remote region within the middle of the California molecular cloud, we aim to investigate the relationship between filaments, cores, and a molecular outflow in a relatively pristine environment. An extinction map of the region from Herschel Space Observatory observations reveals the presence of two 2 pc long filaments radiating from a highextinction clump. Using the (CO)-C-13 observations, we show that the filaments have coherent velocity gradients and that their mass-per-unit-lengths may exceed the critical value above which filaments are gravitationally unstable. The region exhibits structure with eight cores, at least one of which is a starless, prestellar core. We identify a low-velocity, low-mass molecular outflow that may be driven by a flat spectrum protostar. The outflow does not appear to be responsible for driving the turbulence in the core with which it is associated, nor does it provide significant support against gravitational collapse.
66

Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

Adamo, A., Ryon, J. E., Messa, M., Kim, H., Grasha, K., Cook, D. O., Calzetti, D., Lee, J. C., Whitmore, B. C., Elmegreen, B. G., Ubeda, L., Smith, L. J., Bright, S. N., Runnholm, A., Andrews, J. E., Fumagalli, M., Gouliermis, D. A., Kahre, L., Nair, P., Thilker, D., Walterbos, R., Wofford, A., Aloisi, A., Ashworth, G., Brown, T. M., Chandar, R., Christian, C., Cignoni, M., Clayton, G. C., Dale, D. A., de Mink, S. E., Dobbs, C., Elmegreen, D. M., Evans, A. S., Gallagher III, J. S., Grebel, E. K., Herrero, A., Hunter, D. A., Johnson, K. E., Kennicutt, R. C., Krumholz, M. R., Lennon, D., Levay, K., Martin, C., Nota, A., Ostlin, G., Pellerin, A., Prieto, J., Regan, M. W., Sabbi, E., Sacchi, E., Schaerer, D., Schiminovich, D., Shabani, F., Tosi, M., Van Dyk, S. D., Zackrisson, E. 05 June 2017 (has links)
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes similar to-2 and a truncation of a few times 10(5) M-circle dot. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (<= 10(4) M-circle dot) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.
67

Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

Moe, Maxwell, Di Stefano, Rosanne 06 June 2017 (has links)
We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q. =. M-comp/M-1. After combining the samples from the various surveys and correcting for their respective selection effects, we find that the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P less than or similar to 20. days (separations a less than or similar to 0.4 au), the binaries have small eccentricities e... 0.4, favor modest mass ratios < q > less than or similar to 0.5, and exhibit a small excess of twins q. >. 0.95. Second, the companion frequency peaks at intermediate periods log P (days). approximate to. 3.5 (a approximate to 10 au), where the binaries have mass ratios weighted toward small values q. approximate to 0.2-0.3 and follow a Maxwellian " thermal" eccentricity distribution. Finally, companions with long orbital periods log P (days). approximate to 5.5-7.5 (a approximate to 200-5000 au) are outer tertiary components in hierarchical triples and have a mass ratio distribution across q. approximate to 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary-star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that 30% +/-. 10% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q. >. 0.1 and log P (days). <. 8.0 per primary increases from 0.50. +/- 0.04 for solar-type MS primaries to 2.1. +/- 0.3 for O-type MS primaries. We fit joint probability density functions f (M-1, q, P, e) not equal f (M-1) f (q) f (P) f (e) to the corrected distributions, which can be incorporated into binary population synthesis studies.
68

Observational signatures of the first stars : from the near infrared background to Lyman-[alpha] emitters

Fernandez, Elizabeth Rose 11 September 2012 (has links)
Not available / text
69

Accretion Disks and the Formation of Stellar Systems

Kratter, Kaitlin Michelle 18 February 2011 (has links)
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods which we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, very massive stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
70

Star cluster formation and molecular cloud destruction caused by radiative feedback / 星団形成と輻射フィードバックによる分子雲破壊

Inoguchi, Mutsuko 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23704号 / 理博第4794号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 嶺重 慎, 教授 長田 哲也, 准教授 細川 隆史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.7225 seconds