Spelling suggestions: "subject:"stationären borlösungen"" "subject:"stationären bildlösungen""
1 |
Stochastische Differentialgleichungen mit unendlichem GedächtnisRiedle, Markus 02 July 2003 (has links)
Für einen R^d-wertigen stochastischen Prozess X auf R bezeichne X_t den Segmentprozess X_t:={X(t+u): u = 0. Es wird folgende affine stochastische Differentialgleichung mit unendlichem Gedächtnis betrachtet: dX(t)=L(X_t)dt + dW(t) für t >= 0, X_0=F, (A) wobei L:B -> R^d ein lineares stetiges Funktional, W einen Wiener-Prozess mit Werten in R^d sowie B einen semi-normierten linearen Unterraum von {f:(-00, 0] -> R^d} bezeichnen. Die Anfangsbedingung F ist eine B-wertige Zufallsvariable. Die Lösung X der Gleichung (A) lässt sich mittels einer Formel der Variation der Konstanten darstellen. Für die Existenz einer stationären Lösung werden hinreichende und notwendige Bedingungen vorgestellt. Für eine spezielle Klasse von Funktionalen L kann Gleichung (A) auf ein System gewöhnlicher stochastischer Gleichungen ohne Gedächtnis reduziert werden. Diese Reduktion wird im Detail untersucht, insbesondere gewinnt man hierdurch ein einfaches äquivalentes Kriterium für die Existenz stationärer Lösungen von Gleichungen mit Funktionalen L dieser Klasse. Durch Einbettung der Gleichung (A) in den Bidualraum B** gelingt die Bestimmung der Lyapunov-Exponenten der Lösung. Hierzu wird ein neuer Zusammenhang der Lösung der sogenannten adjungierten Gleichung von (A) und einer Spektralzerlegung des Raumes B benutzt. Die Untersuchung der stetigen Abhängigkeit der Lösung von dem Funktional L und der Anfangsbedingung F ermöglicht die Behandlung anwendungsorientierter Aspekte. In Verbindung mit den Ergebnissen über reduzierbare Gleichungen wird ein Verfahren zur Approximation der Lösung von Gleichung (A) durch Ornstein-Uhlenbeck-Prozesse vorgestellt. Eine allgemeine Klasse von Ito-Differentialgleichungen mit nichtlinearen vergangenheitsabhängigen Drift- und Dispersionskoeffizienten wird eingeführt, in der die Gleichung (A) als eine spezielle affine Gleichung verstanden werden kann. Für diese allgemeinen Gleichungen wird ein Existenz- und Eindeutigkeitssatz nachgewiesen. / For an R^d-valued stochastic process X denote the segment process by X_t:={X(t+u): u = 0. We consider the following affine stochastic differential equation with infinite delay: dX(t)=L(X_t)dt + dW(t) for t >= 0, X_0= F, (A) where L:B -> R^d denotes a linear continuous functional, W denotes a Wiener process with values in R^d and B is a semi-normed linear subspace of {f: (-00, 0] -> R^d}. The initial condition F is a B-valued random variable. The solution X of equation (A) can be represented by a variation of constants formula. We provide sufficient and necessary conditions for the existence of a stationary solution. For a special class of functionals L the equation (A) can be reduced to a system of ordinary stochastic differential equations without memory. This reduction is studied in detail. In particular, we deduce a simple equivalent condition for the existence of stationary solutions of equations with functionals L in this class. The embedding of equation (A) into the bidualspace B** enables us to calculate the Lyapunov exponents of the solution. For this purpose we exploit a new connection between the solution of the so-called adjoint equation of (A) and a spectral decompositon of the space B. By considering the continuous dependence of the solution on the functional L and the initial condition F we obtain results useful in applications. In conjunction with results on reducible equations we establish an approximation scheme for the solution of equation (A) by Ornstein-Uhlenbeck processes. Moreover, we introduce a general class of Ito differential equations with non-linear drift and dispersion hereditary coefficients. We deduce a result on the existence of unique solutions for this general class of equations. Equation (A) can be regarded as a special affine equation in this class.
|
Page generated in 0.119 seconds