• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 12
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algebraic Multigrid for Markov Chains and Tensor Decomposition

Miller, Killian January 2012 (has links)
The majority of this thesis is concerned with the development of efficient and robust numerical methods based on adaptive algebraic multigrid to compute the stationary distribution of Markov chains. It is shown that classical algebraic multigrid techniques can be applied in an exact interpolation scheme framework to compute the stationary distribution of irreducible, homogeneous Markov chains. A quantitative analysis shows that algebraically smooth multiplicative error is locally constant along strong connections in a scaled system operator, which suggests that classical algebraic multigrid coarsening and interpolation can be applied to the class of nonsymmetric irreducible singular M-matrices with zero column sums. Acceleration schemes based on fine-level iterant recombination, and over-correction of the coarse-grid correction are developed to improve the rate of convergence and scalability of simple adaptive aggregation multigrid methods for Markov chains. Numerical tests over a wide range of challenging nonsymmetric test problems demonstrate the effectiveness of the proposed multilevel method and the acceleration schemes. This thesis also investigates the application of adaptive algebraic multigrid techniques for computing the canonical decomposition of higher-order tensors. The canonical decomposition is formulated as a least squares optimization problem, for which local minimizers are computed by solving the first-order optimality equations. The proposed multilevel method consists of two phases: an adaptive setup phase that uses a multiplicative correction scheme in conjunction with bootstrap algebraic multigrid interpolation to build the necessary operators on each level, and a solve phase that uses additive correction cycles based on the full approximation scheme to efficiently obtain an accurate solution. The alternating least squares method, which is a standard one-level iterative method for computing the canonical decomposition, is used as the relaxation scheme. Numerical tests show that for certain test problems arising from the discretization of high-dimensional partial differential equations on regular lattices the proposed multilevel method significantly outperforms the standard alternating least squares method when a high level of accuracy is required.
12

Algebraic Multigrid for Markov Chains and Tensor Decomposition

Miller, Killian January 2012 (has links)
The majority of this thesis is concerned with the development of efficient and robust numerical methods based on adaptive algebraic multigrid to compute the stationary distribution of Markov chains. It is shown that classical algebraic multigrid techniques can be applied in an exact interpolation scheme framework to compute the stationary distribution of irreducible, homogeneous Markov chains. A quantitative analysis shows that algebraically smooth multiplicative error is locally constant along strong connections in a scaled system operator, which suggests that classical algebraic multigrid coarsening and interpolation can be applied to the class of nonsymmetric irreducible singular M-matrices with zero column sums. Acceleration schemes based on fine-level iterant recombination, and over-correction of the coarse-grid correction are developed to improve the rate of convergence and scalability of simple adaptive aggregation multigrid methods for Markov chains. Numerical tests over a wide range of challenging nonsymmetric test problems demonstrate the effectiveness of the proposed multilevel method and the acceleration schemes. This thesis also investigates the application of adaptive algebraic multigrid techniques for computing the canonical decomposition of higher-order tensors. The canonical decomposition is formulated as a least squares optimization problem, for which local minimizers are computed by solving the first-order optimality equations. The proposed multilevel method consists of two phases: an adaptive setup phase that uses a multiplicative correction scheme in conjunction with bootstrap algebraic multigrid interpolation to build the necessary operators on each level, and a solve phase that uses additive correction cycles based on the full approximation scheme to efficiently obtain an accurate solution. The alternating least squares method, which is a standard one-level iterative method for computing the canonical decomposition, is used as the relaxation scheme. Numerical tests show that for certain test problems arising from the discretization of high-dimensional partial differential equations on regular lattices the proposed multilevel method significantly outperforms the standard alternating least squares method when a high level of accuracy is required.
13

Studies on Asymptotic Analysis of GI/G/1-type Markov Chains / GI/G/1型マルコフ連鎖の漸近解析に関する研究

Kimura, Tatsuaki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20517号 / 情博第645号 / 新制||情||111(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 髙橋 豊, 教授 太田 快人, 教授 大塚 敏之, 准教授 増山 博之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
14

Convergence Formulas for the Level-increment Truncation Approximation of M/G/1-type Markov Chains / M/G/1型マルコフ連鎖のレベル増分切断近似に対する収束公式

Ouchi, Katsuhisa 24 November 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24980号 / 情博第853号 / 新制||情||143(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 田中 利幸, 教授 下平 英寿, 准教授 本多 淳也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
15

Modelování systémů bonus - malus / Modelling Bonus - Malus Systems

Stroukalová, Marika January 2013 (has links)
Title: Modelling Bonus - Malus Systems Author: Marika Stroukalová Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Lucie Mazurová, Ph.D., KPMS MFF UK Abstract: In this thesis we deal with bonus-malus tariff systems commonly used to adjust the a priori set premiums according to the individual claims during mo- tor third party liability insurance. The main aim of this thesis is to describe the standard model based on the Markov chain. For each bonus-malus class we also determine the relative premium ("relativity"). Another objective of this thesis is to find optimal values for the relativities taking into account the a priori set premiums. We apply the theoretical model based on the stationary distribu- tion of bonus-malus classes on real-world data and a particular real bonus-malus system used in the Czech Republic. The empirical part of this thesis compares the optimal and the real relativities and assesses the suitability of the chosen theoretical model for the particular bonus-malus system. Keywords: bonus-malus system, a priori segmentation, stationary distribution, relativity, quadratic loss function 1
16

Perturbed discrete time stochastic models

Petersson, Mikael January 2016 (has links)
In this thesis, nonlinearly perturbed stochastic models in discrete time are considered. We give algorithms for construction of asymptotic expansions with respect to the perturbation parameter for various quantities of interest. In particular, asymptotic expansions are given for solutions of renewal equations, quasi-stationary distributions for semi-Markov processes, and ruin probabilities for risk processes. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript. Paper 6: Manuscript.</p>
17

Processus de Fleming-Viot, distributions quasi-stationnaires et marches aléatoires en interaction de type champ moyen / Fleming-Viot process, quasi-stationary distributions and random walks in mean field type interaction

Thai, Anh-Thi Marie Noémie 27 November 2015 (has links)
Dans cette thèse nous étudions le comportement asymptotique de systèmes de particules en interaction de type champ moyen en espace discret, systèmes pour lesquels l'interaction a lieu par l'intermédiaire de la mesure empirique. Dans la première partie de ce mémoire, nous nous intéressons aux systèmes de particules de type Fleming-Viot: les particules se déplacent indépendamment suivant une dynamique markovienne jusqu'au moment où l'une d'entre elles touche un état absorbant. A cet instant, la particule absorbée choisit uniformément une autre particule et saute sur sa position. L'ergodicité du processus est établie dans le cadre de marches aléatoires sur N avec dérive vers l'origine et pour une dynamique proche de celle du graphe complet. Pour ce dernier, nous obtenons une estimation quantitative de la convergence en temps long à l'aide de la courbure de Wasserstein. Nous montrons de plus la convergence de la distribution empirique stationnaire vers une unique distribution quasi-stationnaire, quand le nombre de particules tend vers l'infini. Dans la deuxième partie de ce mémoire, nous nous intéressons au comportement en temps long et quand le nombre de particules devient grand, d'un système de processus de naissance et mort pour lequel les particules interagissent à chaque instant par le biais de la moyenne de leurs positions. Nous établissons l'existence d'une limite macroscopique, solution d'une équation non linéaire ainsi que le phénomène de propagation du chaos avec une estimation quantitative et uniforme en temps / In this thesis we study the asymptotic behavior of particle systems in mean field type interaction in discrete space, where the system acts over one fixed particle through the empirical measure of the system. In the first part of this thesis, we are interested in Fleming-Viot particle systems: the particles move independently of each other until one of them reaches an absorbing state. At this time, the absorbed particle jumps instantly to the position of one of the other particles, chosen uniformly at random. The ergodicity of the process is established in the case of random walks on N with a dirft towards the origin and on complete graph dynamics. For the latter, we obtain a quantitative estimate of the convergence described by the Wasserstein curvature. Moreover, under the invariant measure, we show the convergence of the empirical measure towards the unique quasi-stationary distribution as the size of the system tends to infinity. In the second part of this thesis, we study the behavior in large time and when the number of particles is large of a system of birth and death processes where at each time a particle interacts with the others through the mean of theirs positions. We establish the existence of a macroscopic limit, solution of a non linear equation and the propagation of chaos phenomenon with quantitative and uniform in time estimate
18

Advances in the stochastic and deterministic analysis of multistable biochemical networks

Petrides, Andreas January 2018 (has links)
This dissertation is concerned with the potential multistability of protein concentrations in the cell that can arise in biochemical networks. That is, situations where one, or a family of, proteins may sit at one of two or more different steady state concentrations in otherwise identical cells, and in spite of them being in the same environment. Models of multisite protein phosphorylation have shown that this mechanism is able to exhibit unlimited multistability. Nevertheless, these models have not considered enzyme docking, the binding of the enzymes to one or more substrate docking sites, which are separate from the motif that is chemically modified. Enzyme docking is, however, increasingly being recognised as a method to achieve specificity in protein phosphorylation and dephosphorylation cycles. Most models in the literature for these systems are deterministic i.e. based on Ordinary Differential Equations, despite the fact that these are accurate only in the limit of large molecule numbers. For small molecule numbers, a discrete probabilistic, stochastic, approach is more suitable. However, when compared to the tools available in the deterministic framework, the tools available for stochastic analysis offer inadequate visualisation and intuition. We firstly try to bridge that gap, by developing three tools: a) a discrete `nullclines' construct applicable to stochastic systems - an analogue to the ODE nullcines, b) a stochastic tool based on a Weakly Chained Diagonally Dominant M-matrix formulation of the Chemical Master Equation and c) an algorithm that is able to construct non-reversible Markov chains with desired stationary probability distributions. We subsequently prove that, for multisite protein phosphorylation and similar models, in the deterministic domain, enzyme docking and the consequent substrate enzyme-sequestration must inevitably limit the extent of multistability, ultimately to one steady state. In contrast, bimodality can be obtained in the stochastic domain even in situations where bistability is not possible for large molecule numbers. We finally extend our results to cases where we have an autophosphorylating kinase, as for example is the case with $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII), a key enzyme in synaptic plasticity.
19

Approche analytique pour le mouvement brownien réfléchi dans des cônes / Analytic approach for reflected Brownian motion in cones

Franceschi, Sandro 08 December 2017 (has links)
Le mouvement Brownien réfléchi de manière oblique dans le quadrant, introduit par Harrison, Reiman, Varadhan et Williams dans les années 80, est un objet largement analysé dans la littérature probabiliste. Cette thèse, qui présente l’étude complète de la mesure invariante de ce processus dans tous les cônes du plan, a pour objectif plus global d’étendre au cadre continu une méthode analytique développée initialement pour les marches aléatoires dans le quart de plan par Fayolle, Iasnogorodski et Malyshev dans les années 70. Cette approche est basée sur des équations fonctionnelles, reliant des fonctions génératrices dans le cas discret et des transformées de Laplace dans le cas continu. Ces équations permettent de déterminer et de résoudre des problèmes frontière satisfaits par ces fonctions génératrices. Dans le cas récurrent, cela permet de calculer explicitement la mesure invariante du processus avec rebonds orthogonaux, dans le chapitre 2, et avec rebonds quelconques, dans le chapitre 3. Les transformées de Laplace des mesures invariantes sont prolongées analytiquement sur une surface de Riemann induite par le noyau de l’équation fonctionnelle. L’étude des singularités et l’application de méthodes du point col sur cette surface permettent de déterminer l’asymptotique complète de la mesure invariante selon toutes les directions dans le chapitre 4. / Obliquely reflected Brownian motion in the quadrant, introduced by Harrison, Reiman, Varadhan and Williams in the eighties, has been studied a lot in the probabilistic literature. This thesis, which presents the complete study of the invariant measure of this process in all the cones of the plan, has for overall aim to extend to the continuous framework an analytic method initially developped for random walks in the quarter plane by Fayolle, Iasnogorodski and Malyshev in the seventies. This approach is based on functional equations which link generating functions in the discrete case and Laplace transform in the continuous case. These equations allow to determine and to solve boundary value problems satisfied by these generating functions. In the recurrent case, it permits to compute explicitly the invariant measure of the process with orthogonal reflexions, in the chapter 2, and with any reflexions, in the chapter 3. The Laplace transform of the invariant measure is analytically extended to a Riemann surface induced by the kernel of the functional equation. The study of singularities and the use of saddle point methods on this surface allows to determine the full asymptotics of the invariant measure along every directions in the chapter 4.

Page generated in 0.1943 seconds