• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CO<sub>2</sub> Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant

Alie, Colin January 2004 (has links)
In Canada, coal-fired power plants are the largest anthropogenic point sources of atmospheric CO<sub>2</sub>. The most promising near-term strategy for mitigating CO<sub>2</sub> emissions from these facilities is the post-combustion capture of CO<sub>2</sub> using MEA (monoethanolamine) with subsequent geologic sequestration. While MEA absorption of CO<sub>2</sub> from coal-derived flue gases on the scale proposed above is technologically feasible, MEA absorption is an energy intensive process and especially requires large quantities of low-pressure steam. It is the magnitude of the cost of providing this supplemental energy that is currently inhibiting the deployment of CO<sub>2</sub> capture with MEA absorption as means of combatting global warming. The steam cycle of a power plant ejects large quantities of low-quality heat to the surroundings. Traditionally, this waste has had no economic value. However, at different times and in different places, it has been recognized that the diversion of lower quality streams could be beneficial, for example, as an energy carrier for district heating systems. In a similar vein, using the waste heat from the power plant steam cycle to satisfy the heat requirements of a proposed CO<sub>2</sub> capture plant would reduce the required outlay for supplemental utilities; the economic barrier to MEA absorption could be removed. In this thesis, state-of-the-art process simulation tools are used to model coal combustion, steam cycle, and MEA absorption processes. These disparate models are then combined to create a model of a coal-fired power plant with integrated CO<sub>2</sub> capture. A sensitivity analysis on the integrated model is performed to ascertain the process variables which most strongly influence the CO<sub>2</sub> energy penalty. From the simulation results with this integrated model, it is clear that there is a substantial thermodynamic advantage to diverting low-pressure steam from the steam cycle for use in the CO<sub>2</sub> capture plant. During the course of the investigation, methodologies for using Aspen Plus?? to predict column pressure profiles and for converging the MEA absorption process flowsheet were developed and are herein presented.
2

CO<sub>2</sub> Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant

Alie, Colin January 2004 (has links)
In Canada, coal-fired power plants are the largest anthropogenic point sources of atmospheric CO<sub>2</sub>. The most promising near-term strategy for mitigating CO<sub>2</sub> emissions from these facilities is the post-combustion capture of CO<sub>2</sub> using MEA (monoethanolamine) with subsequent geologic sequestration. While MEA absorption of CO<sub>2</sub> from coal-derived flue gases on the scale proposed above is technologically feasible, MEA absorption is an energy intensive process and especially requires large quantities of low-pressure steam. It is the magnitude of the cost of providing this supplemental energy that is currently inhibiting the deployment of CO<sub>2</sub> capture with MEA absorption as means of combatting global warming. The steam cycle of a power plant ejects large quantities of low-quality heat to the surroundings. Traditionally, this waste has had no economic value. However, at different times and in different places, it has been recognized that the diversion of lower quality streams could be beneficial, for example, as an energy carrier for district heating systems. In a similar vein, using the waste heat from the power plant steam cycle to satisfy the heat requirements of a proposed CO<sub>2</sub> capture plant would reduce the required outlay for supplemental utilities; the economic barrier to MEA absorption could be removed. In this thesis, state-of-the-art process simulation tools are used to model coal combustion, steam cycle, and MEA absorption processes. These disparate models are then combined to create a model of a coal-fired power plant with integrated CO<sub>2</sub> capture. A sensitivity analysis on the integrated model is performed to ascertain the process variables which most strongly influence the CO<sub>2</sub> energy penalty. From the simulation results with this integrated model, it is clear that there is a substantial thermodynamic advantage to diverting low-pressure steam from the steam cycle for use in the CO<sub>2</sub> capture plant. During the course of the investigation, methodologies for using Aspen Plus® to predict column pressure profiles and for converging the MEA absorption process flowsheet were developed and are herein presented.
3

Návrh turbíny do kombinovaného cyklu / Design turbines to combined cycle

Veselý, Petr January 2017 (has links)
The topic of thesis is condensing turbine in gas-steam cycle, which can be divided into four basic parts. A history of gas-steam cycle is described in the beginning. Second part is all about calculation of heat recovery steam generator. Penultimate section deals with calculations of steam turbine parameters and reaction blading type. Last part contains electric power and steam turbine efficiency.
4

Parní turbína o výkonu 300 MW / Steam Turbine 300 MW

Veleba, Lukáš January 2018 (has links)
The Diploma thesis named Steam Turbine 300 MW contains the proposal of the Turboset for the steam section of the gas-steam cycle. There is a calculation of the thermal cycle, and a thermodynamic calculation of the combined high pressure - as well as intermediate pressure and low pressure parts. Strength calculation of particular parts and a check of the critical turbine speed follow on from this. This thesis includes a drawing of the cross-section of HP-IP and partial operations. My thesis has been commissioned by Doosan Škoda Power.
5

Modernizace VT dílu parní turbiny 300 MW / Retrofit HP Section Steam Turbine 300MW

Vaľočík, Jan January 2014 (has links)
The aim of this master‘s thesis is retrofit of a 300 MW tandem compound steam turbinetype K300 - 170 with three casings and reheat of steam. In the first part a heat balance of the cycle is calculated for given nominal parameters. Further the thesis is focused only on the high pressure section of the turbine, for which the flow section is designed based on thermodynamic calculations and appropriate blade profiles are selected. Then the stress control of the blading is done. The thesis is concluded with estimation of power loss due to shaft seals and real power output of the turbine is calculated. This thesis also includes a drawing of axial section of the high pressure section of the turbine.
6

Thermal energy storage in metallic phase change materials

Kotze, Johannes Paulus 12 1900 (has links)
Thesis (PhD) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid. Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation. To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation. / AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof. Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing. Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
7

Parní turbína v paroplynovém cyklu / Steam Turbine in the Combi Cycle

Filoušová, Natálie January 2017 (has links)
Diploma thesis named Steam turbine in the combi cycle deals with design of low pressure part of three-body turbine and it’s lateral outlet throat to the air condenser. Before the design itself, the thermal schema of entire turbine is calculated. Than follows the detail draft, the strength calculations are included as well. Turbine has any technological consumption of steam or any regenerativ consumption. Turbine will be suplly to Panama. The thesis includes following drawings: cut of flowing part, design of outlet throat and fixing of inner body in outer body of low pressure part. The diploma thesis is created for Doosan Škoda Power company.
8

Návrh paroplynového cyklu pro teplárenský provoz / Design of a combi cycle for heating plant

Rovný, Jan January 2020 (has links)
Nowadays, European power production has to meet requirements than ever before. Environmentally oriented efforts end of coal mining and burning of coal, on which economies of a great number of countries depend. The main objective of these efforts is primarily the production of green energy from renewable energy sources and reduction of dependence on fossil fuels. However, the disadvantage of renewable sources (photovoltaics, wind farms) is their dependence on the weather conditions. As a result, there might be delays in supply of electricity, which must be compensated. One of the solutions is the launch of a combi cycle plant, which has the possibility of almost prompt start-up and electricity production. The combustion of gas and liquid fuels also ensures almost emission-free operation. In addition, thanks to the use of waste heat energy from the gas turbine, it is possible to operate the combi cycle unit with the character of a power plant and as a heating plant. The aim of this thesis is to search for combi cycles and balance calculation of the combi cycle heating plant under given conditions. In the last point, the approximate dimensions of the calculated heating plant are given.
9

Dvoutělesová kondenzační parní turbina / Double Casing Condensing Steam Turbine

Adámek, Tomáš January 2013 (has links)
This thesis is focused on calculation of double casing condensing steam turbine with capacity 200 MW for petrochemical industry´s consumptions. Engine is projected for gas-steam cycle. It has one controlled extraction points placed between two bodies, two uncontrolled extraction points and axial output to air-cooling condenser. Balance scheme was made for 100% operation. Detail design is made only for ST/NT casing and it includes calculation of flowing part, selection of blade´s profile and its stress control. Rotor is checked for critical speed, safety rigid coupling is calculated and according to reaction forces journal bearing are designed. In the end regulation of turbo-set is discussed more precisely and there are calculation of temperature and pressure in uncontrolled extraction points during 80% and 60% operation. Thesis was written out according to Doosan Skoda Power´s instruction and with their cooperation.
10

Development of a Nordic BWR plant model in APROS and design of a power controller using the control rods / Utveckling av en nordisk BWR-anläggningsmodell i APROS och design av ett effektregleringssystem med hjälp av styrstavarna

Al-Ani, Jonathan January 2021 (has links)
In this master thesis an input-model of a Nordic BWR power plant has been developed in APROS. The plant model contains key systems and major thermohydraulic components of the steam cycle, including I&amp;C systems (i.e. power, pressure, level and flow controls). The plant model is primarily designed for balance of plant studies at discrete power levels. The input-model of the power plant focuses especially on the steam cycle which is crucial for analysing water and steam behaviour and its influence on the reactor power. At the current stage, the model primarily handles steady-state conditions of full-power operation, which has been the design point. It has also been shown that reduced-power operation can be simulated with a reasonable trendline of pressure and temperature progression over facility components. / Inom ramen för examensarbete har en indatafil (modell) av en nordisk kokvattenreaktor, BWR, utvecklats i simuleringsverktyget APROS. Anläggningsmodellen är främst utformad för att simulera diskreta effektnivåer och innehåller viktiga system och termohydrauliska komponenter som ingår i ångcykeln, inklusive instrumenterings- och kontrollutrustning (dvs. effekt-, tryck-, nivå- och flödesreglering). Fokus har lagts särskilt på att få till en bra representation av ångcykeln, vilket är avgörande för analys av vatten- och ångbeteendet och dess påverkan på reaktoreffekten. Modellen kan främst användas för simulering av jämviktstillstånd vid full effektdrift och till en viss grad även reducerad effektdrift.

Page generated in 0.0374 seconds