• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 14
  • 9
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 46
  • 28
  • 18
  • 15
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transition metal catalyzed C-C bond formation under transfer hydrogenation conditions

Leung, Joyce Chi Ching 10 October 2013 (has links)
Carbon-carbon bond forming reactions are fundamental transformations for constructing structurally complex organic building blocks, especially in the realm of natural products synthesis. Classical protocols for forming a C-C bond typically require the use of stoichiometrically preformed organometallic reagents, constituting a major drawback for organic synthesis on process scale. Since the emergence of transition metal catalysis in hydrogenation and hydrogenative C-C coupling reactions, atom and step economy have become important considerations in the development of sustainable methods. In the Krische laboratory, our goal is to utilize abundant, renewable feedstocks, so that the reactions can proceed in an efficient and atom-economical manner. Our research focuses on developing new C-C bond forming protocols that transcend the use of stoichiometric, preformed organometallic reagents, in which [pi]-unsaturates can be employed as surrogates to discrete premetallated reagents. Under transition metal catalyzed transfer hydrogenation conditions, alcohols can engage in C-C coupling, avoiding unnecessary redox manipulations prior to carbonyl addition. Stereoselective variants of these reactions are also under extensive investigation to effect stereo-induction by way of chiral motifs found in ligands and counterions. The research presented in this dissertation represents the development of a new class of C-C bond forming transformations useful for constructing synthetic challenging molecules. Development of transfer hydrogenative C-C bond forming reactions in the form of carbonyl additions such as carbonyl allylation, carbonyl propargylation, carbonyl vinylation etc. are discussed in detail. Additionally, these methods avoid the use of stoichiometric chiral allenylmetal, propargylmetal or vinylmetal reagents, respectively, accessing diastereo- and enantioenriched products of carbonyl additions in the absence of stoichiometric organometallic byproducts. By exploiting the atom-economical transfer hydrogenative carbonyl addition protocols using ruthenium and iridium, preparations of important structural motifs that are abundant in natural products, such as allylic alcohols, homoallylic alcohols and homopropargylic alcohols, become more feasible and accessible. / text
12

Análise estereosseletiva da tioridazina e seus principais metabólitos: um estudo cinético de biotransformação empregando fungos / Stereoselective analysis of thioridazine and its major metabolites: a kinetic study of biotransformation by fungi

Keyller Bastos Borges 09 November 2006 (has links)
BORGES, K. B. Análise estereosseletiva da tioridazina e seus principais metabólitos: um estudo cinético de biotransformação empregando fungos. 2006. 124f. Dissertação (Mestrado) Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, 2006. Atualmente, existe um grande interesse em estudar a biotransformação estereosseletiva de fármacos, incluindo os processos que reproduzem as vias de metabolização in vivo. Alguns desses estudos estão sendo realizados empregando microrganismos como, por exemplo, fungos. A cromatografia líquida de alta eficiência é umas das técnicas que pode ser empregada para a resolução, identificação e quantificação das espécies quirais formadas. A tioridazina (THD) é um fármaco quiral, com atividade antipsicótica utilizado para o tratamento da esquizofrenia. Possui como principais metabólitos a tioridazina-2-sulfóxido (THD-2-SO) e tioridazina-2-sulfona (THD-2-SO2), ambos com atividade antipsicótica, e a tioridazina-5-sulfóxido (THD-5-SO), que contribui para o efeito cardiotóxico do fármaco. Portanto, o presente trabalho tem por finalidade o desenvolvimento de um método de análise estereosseletiva da THD-2-SO e THD-5-SO em meio de cultura para avaliação do potencial de biotransformação da THD por alguns fungos. A melhor resolução dos estereoisômeros da THD-2-SO e THD-5-SO foi obtida utilizando a coluna CHIRALPAK® AS e fase móvel hexano : etanol : metanol (92:6:2, v/v/v) + 0,5% de dietilamina. A extração líquido líquido foi utilizada na preparação das amostras, tendo como solvente extrator o éter etílico. O método desenvolvido apresentou recuperação em torno de 100% para todos os compostos avaliados. Os coeficientes de variação e erros obtidos nos estudos de precisão e exatidão, intra e interensaios, foram inferiores a 10%. O método desenvolvido e validado foi empregado para avaliar o potencial de biotransformação da THD por 12 fungos endofíticos isolados de Tithonia diversifolia, Viguiera arenaria e Viguiera robusta e 1 fungo de solo (Penicillium waksmanii). Dentre os 13 fungos avaliados, quatro merecem destaque por apresentarem um potencial de biotransformação estereosseletivo mais evidenciado: Phomopsis sp. (TD2) apresentou maior mono-5-sulfoxidação para as formas (S)-(SE) e (R)-(FE) (9,3% e 5,8%, respectivamente);Glomerella cingulata (VA1) apresentou maior mono-5-sulfoxidação para as formas (S)-(SE) + (R)-(FE) (39,7%); Diaporthe phaseolorum (VR4) apresentou maior mono-2-sulfoxidação para as formas (S)-(SE) e (R)-(FE) (84,4% e 82,5%, respectivamente) e Aspergillus fumigatus (VR12) apresentou maior mono-2-sulfoxidação das formas (S)-(FE) (20,7%) e (R)-(SE) (34,4%). / BORGES, K. B. Stereoselective analysis of thioridazine and its major metabolites: a kinetic study of biotransformation by fungi. 2006. 124p. Dissertation (Masters degree) Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, 2006. The interest in stereoselective biotransformation of drugs including the processes that reproduce the in vivo metabolism has been increased. To study drug metabolism several models have been used. Among them, studies carried out using microorganisms, mainly fungi have been standing out. High-Performance Liquid Chromatography can be used for the resolution, identification and quantification of the chiral species formed. The thioridazine (THD) is a chiral drug used as antipsychotic for the treatment of schizophrenia. The main metabolites of THD are thioridazine-2-sulfoxide (THD-2-SO), thioridazine-2-sulfone (THD-2-SO2) and thioridazine-5-sulfoxide (THD-5-SO). The THD-2-SO and THD-2-SO2 possesss antipsychotic activity and THD-5-SO contributes to the cardiotoxicity of drug more than the parent compound. Therefore, the aim of the present work was to develop a method for the stereoselective analysis of THD-2-SO and THD-5-SO in culture medium to study biotransformation of THD by some fungi. The simultaneous determination of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide was performed on a CHIRALPAK® AS column using a mobile phase constituted of hexane: ethanol: methanol (92:6:2, v/v/v) + 0.5% diethylamine. Diethyl ether was used as extraction solvent. Recoveries around 100% were obtained for all the evaluated species. The coefficients of variation and relative errors in precision and accuracy studies (within-day and between-day) were below 10%. The validated method was used to evaluate the biotransformation of THD by 12 endophytic fungi isolated from Tithonia diversifolia, Viguiera arenaria and Viguiera robusta and 1 fungus isolated from soil (Penicillium waksmanii). Among the 13 fungi evaluated, four of them deserve prominence for presenting an evidenced stereoselective biotransformation potential: Phomopsis sp. (TD2) presented greater mono-5-sulfoxidation to the forms (S)-(SE) e (R)-(FE) (9.3% and 5.8%, respectively); Glomerella cingulata (VA1) presented greater mono-5-sulfoxidation to the forms (S)-(SE) + (R)-(FE) (39.7%); Diaporthe phaseolorum (VR4) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(FE) (84.4% and 82.5%, respectively) and Aspergillus fumigatus (VR12) presented greater mono-2-sulfoxidation to the forms (S)-(FE) (20.7%) and (R)-(SE) (34.4%).
13

Stereoselective Solid-State NaBH₄ Reduction of 1-Methylpentacyclo[5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecane-8, 11-Dione, Synthesis and Chemistry of Strained Alkenes, and Chemical and Microbial Synthesis of Racemic and Optically Active (S)-4-Hydroxy-2-Cyclohexenone

Xing, Dongxia 08 1900 (has links)
Part I. Reduction of the 1-methylpentacyclo [5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecane-8, 11-dione (9) with solid NaBH₄ resulted in highly stereoselective reduction of both C=O groups in the substrate, thereby affording the corresponding endo-8, endo-11-diol (11a). The configuration of 11a was established unequivocally by converting 11a into the corresponding cyclic thiocarbonate ester, 12. Part II. Z-1,2-Di(1'-adamantyl)ethene (14) was synthesized with a high degree of stereoselectively in four steps (Scheme 9 in Chapter 2). E-1,2-di(1'-adamantyl)ethene (15) was synthesized by iodine promoted isomerization of 14. Both structures were established unequivocally via single-crystal X-ray structural analysis. E-1-(exo-8'-Pentacyclo[5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecyl)-2-phenylethylene (16a) was synthesized, and its structure was established via analysis of its 1H, 13C, and 2D COSY NMR spectra. Part III. Reactions of electrophiles, i.e.,:CCl_2, PhSCl, and Br_2, to Z- and E-1,2-di(1'-adamantyl)ethenes (14 and 15, respectively) are described (Scheme 5, 8, 10, and 13 in Chapter 3). Structures of the corresponding products were established unequivocally via analysis of their respective one- and two-dimensional NMR spectra and/or single-crystal X-ray structural analysis. Part IV. An improved asymmetric synthesis of optically active (S)-4-hydroxy-2-cyclohexenone 1 (64%ee, determined via Mosher's method) has been developed (Scheme 5 in Chapter 4). The key step in this synthesis involves the baker's yeast reduction of 13. The absolute configuration of the major product, (S)-1, was established unequivocally via single-crystal X-ray structural analysis of a precursor. The optical purity of the major product 14a (80%de, 67%ee) was established via careful integration of relevant gated-decoupled 13C NMR spectra.
14

Stereoselective Synthesis of Organoboronates Through Olefin Transformations and Their Application Towards Biologically Active Targets:

Vendola, Alex Joseph January 2022 (has links)
Thesis advisor: James P. Morken / This dissertation describes three methods towards the stereoselective synthesis of organoboronates, and their application towards pharmacological targets of interest. The first chapter describes the use of alkyl migrating groups and alkyl electrophiles in the synthesis of secondary boronic esters through a highly selective nickel-catalyzed three component conjunctive cross-coupling reaction. Products from this conjunctive cross-coupling reaction are then converted to two alkaloids through boron amination and annulation processes. The second chapter describes the platinum-catalyzed diastereoselective diboration of carbocyclic, heterocyclic, and bicyclic alkenes. This reaction proceeded under air and both a homogeneous and heterogeneous catalyst was employed. Application of this reaction towards synthesis of the nucleoside analog Aristeromycin is also described. The final chapter details the development of an inexpensive and easily synthesized chiral diazaborinine that provides stereoinduction across a wide range of concerted and stepwise cycloaddition processes, affording heterocyclic-boron containing products in high yield and selectivity. Transformations of resulting organoboronates are also described. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
15

Trisubstituted Alkenes through Stereoretentive Cross-Metathesis for Natural Product Synthesis:

Köngeter, Tobias Peter January 2022 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter One: Stereoretentive Cross-Metathesis of Trisubstituted Olefins The development of stereoretentive olefin metathesis catalysts has solved a long-standing problem in the field, allowing for trisubstituted alkenes to be synthesized in high stereochemical purity and under kinetic control. E- as well as Z-isomers of trisubstituted alkenyl halides, nitriles, and allylic alcohols can be accessed through cross-metathesis of commercially available and easily accessible alkenes. Through the use of the same strategy, macrocyclic trisubstituted alkenes have been accessed in either isomeric form through stereoretentive ring-closing metathesis of the corresponding diene starting materials. Thus, for the first time, a wide range of E- and Z-trisubstituted alkenes can be obtained selectively through olefin metathesis, regardless of the underlying thermodynamic preferences. Chapter Two: Development of Catalytic Stereoretentive Cross-Metathesis of Trisubstituted Alkenyl Bromides We have introduced a general and widely applicable strategy for the synthesis of E- and Z-trisubstituted alkenyl bromides through cross-metathesis. The reaction is applicable to terminal, disubstituted, and trisubstituted olefins bearing a variety of functional groups including alkenes with α-, or β-branches. The requisite stereodefined cross-partners, E- and Z-2-bromo-2-butene are commercially available and can be synthesized with ease in one step from abundant starting materials. This represents a notable improvement over our previous approach, where the non-halogenated alkene starting material had to be prepared through cross-coupling in high stereochemical purity to ensure high stereoretention in the subsequent cross-metathesis. Catalysts derived from Mo monoaryloxide pyrrolide complexes, some of which are commercially available, are optimal for this transformation. The applicability of the approach is underscored through the formal synthesis of phomactin A with improved overall yield and step count. Chapter Three: Total Synthesis of Ambrein We have completed a total synthesis of ambrein, a terpenoid isolated from whale secretion, a much sought perfume ingredient. The approach involved joining two fragments through formation of the central trisubstituted alkene. Our route entailed a sequence of cross-metathesis of alkenyl bromides and cross-coupling, providing access to a previously difficult-to-access trisubstituted olefin with high efficiency and selectivity. One fragment was generated from a readily accessible enantiomerically enriched compound, sclareolide, and the other from inexpensive methylcyclohexenone. The stereogenic center of the latter was established through a NHC-Cu-catalyzed enantioselective allylic substitution, which was followed by differentiation of these alkenes through site-selective epoxidation. The total synthesis is more efficient and offers a more practical route to ambrein. Chapter Four: Stereoretentive Cross-Metathesis of Trisubstituted α,β-Unsaturated Carbonyl Compounds We have developed a strategy for the synthesis of Z- and E-Trisubstituted α,β-unsaturated carbonyl compounds through stereoretentive CM involving commercially available or easily accessible alkene substrates. The method is applicable to a variety of α,β-unsaturated esters, thioesters, and acyl fluorides. Furthermore, mono-, di-, and trisubstituted alkenes can be used as starting materials. Transformations may be carried out on gram scale and, in some cases, with commercially available Mo catalysts. The utility of the catalytic approach was highlighted through synthesis of previously accessed intermediates more directly and with improved efficiency. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
16

STEREOSELECTIVE OLEFINATIONS EMPLOYING TRIALKYLPHOSPHORANYLIDES: NEW METHODS AND SYNTHETIC APPLICATIONS

McLeod, David January 2016 (has links)
The Wittig reaction has constantly evolved during the last half-century and is one of the most strategic, reliable, widely-applicable carbon-carbon olefin bond forming processes available in organic synthesis. The reaction allows for olefination with complete positional selectivity, relatively high chemoselectivity and may be conducted in many cases with predictable stereocontrol. Triphenylphosphoranylides are ubiquitously employed and despite the myriad benefits these reagents bestow there are known disadvantages to their use—most prominently related to issues surrounding stereoselectivity and phosphine oxide removal which is notoriously problematic. Trialkylphosphoranylides, by contrast, undergo olefination in the presence of carbonyls with high (E)-stereoselectivity and the corresponding short chain trialkylphosphine oxides are water soluble. Previous work in our group has shown that semi-stabilised ylids of this type readily undergo olefination with a broad range of aldehydes under mild aqueous conditions. This aqueous Wittig reaction was then extended to the synthesis of substituted styrenes using aqueous formalin. In the search for ever milder conditions for the Wittig reaction we were also able to develop an organocatalytic Wittig reaction which was amenable to a bioorthogonal process. Thus, we were able to perform the first Wittig reaction in vivo by feeding the two reactants to Castylegia sepium. Alkenals (colloquially enals) are strategic intermediates in organic synthesis; their importance is growing each year due to the expanding breadth of iminium and vinylogous enamine organocatalysis. Unfortunately their preparation remains problematic requiring labour and reagent intensive multi-step sequences. A new pincolacetal-phosphonium salt (DualPhos) for the stereoselective two-carbon homologation of aldehydes has been developed which allows for the one-pot homologation of aldehydes to enals under aqueous and/or anhydrous conditions; its application to the total synthesis and stereochemical reassignment of phomolides G & H is discussed. / Thesis / Doctor of Philosophy (PhD)
17

Advanced Control of Polymer Structure Based on Multiple Control in Radical Polymerization / ラジカル重合の多元制御に基づく高度な高分子構造制御法の開発

Imamura, Yuji 23 May 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24813号 / 工博第5156号 / 新制||工||1985(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 山子 茂, 教授 辻井 敬亘, 教授 大内 誠 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
18

Stereoselective production of dimethyl-substituted carbapenams via engineered carbapenem biosynthesis enzymes

Hamed, Refaat B., Henry, L., Claridge, T.D.W., Schofield, C. 2016 December 1928 (has links)
Yes / Stereoselective biocatalysis by crotonase superfamily enzymes is exemplified by use of engineered 5-carboxymethylproline synthases (CMPSs) for preparation of functionalized 5-carboxymethylproline (5-CMP) derivatives methylated at two positions (i.e. C2/C6, C3/C6 and C5/C6), including products with a quaternary centre, from appropriately-substituted-amino acid aldehydes and C-2 epimeric methylmalonyl-CoA. The enzymatically-produced disubstituted 5-CMPs were converted by carbapenam synthetase into methylated bicyclic Β-lactams, which manifest improved hydrolytic stability compared to the unsubstituted carbapenams. The results highlight the use of modi-fied carbapenem biosynthesis enzymes for production of new carbapenams with improved properties. / Medical Research Council, Biotechnology and Biological Sciences Research Council (BB/L000121/1)
19

Synthesis of Novel Polyhydroxyl Surfactants. Influence of the Relative Stereochemistry on Surfactant Properties.

Neimert-Andersson, Kristina January 2003 (has links)
<p>This thesis deals with the synthesis and characterization ofnovel polyhydroxyl surfactants. The first part describes thesynthesis of a number of stereoisomers of a polyhydroxylsurfactant, and the second part concerns surface chemicalcharacterization.</p><p>A stereodivergent route for preparation of the hydrophilichead group was developed, featuring consecutive stereoselectivedihydroxylations of a diene. This afforded in total fourdifferent polyhydroxyl head groups. These surfactant headgroups were natural and unnatural sugar analogues, and wereused for the coupling with two different hydrophobic tailgroups.</p><p>Three of these surfactants were used to investigate thechiral discrimination in Langmuir monolayers at an air-waterinterface. The isotherms showed a remarkable difference incompressibility between surfactants of diastereomericrelationship and also a pronounced chiral discriminationbetween racemic and enantiomerically pure surfactants favoringheterochiral discrimination.</p>
20

Heck Reactions with Aryl Chlorides : Studies of Regio- and Stereoselectivity

Datta, Gopal K. January 2008 (has links)
<p>Homogeneous palladium-catalyzed Heck vinylation of aryl chlorides was investigated under air using Herrmann’s palladacycle and the P(<i>t</i>-Bu)<sub>3</sub>-liberating salt [(<i>t</i>-Bu)<sub>3</sub>PH]BF<sub>4</sub>. Based on the results, controlled microwave heating was utilized to accelerate model Heck reactions with aryl chlorides down to 30 min employing an electron-poor olefin and a mixture of an ionic liquid and 1,4-dioxane as solvent.</p><p>For the first time, a highly regioselective general protocol has been developed for palladium-catalyzed terminal (β-) arylation of acyclic vinyl ethers using inexpensive aryl chlorides as starting materials and the preligand [(<i>t</i>-Bu)<sub>3</sub>PH]BF<sub>4</sub> as the key additive. This swift and straightforward protocol exploits non-inert conditions and controlled microwave heating to reduce handling and processing times, and aqueous DMF or environmentally friendly PEG-200 as the reaction medium. Somewhat higher selectivity for the linear β-product was observed in PEG-200. DFT calculations were performed at the B3LYP level of theory for the regioselectivity-determining insertion step in the Heck reaction following the neutral pathway. A series of <i>para</i>-substituted phenylpalladium(II) complexes was investigated in the computational study. The calculations support a ligand-driven selectivity rationale, where the electronic and steric influence of the bulky P(<i>t</i>-Bu)<sub>3</sub> ligand provides improved β-selectivity. The preparative methodology was used to synthesize the β-adrenergic blocking agent Betaxolol.</p><p>Highly stereoselective Pd(0)-catalyzed β-arylation and β-vinylation of a tetra-substituted cyclopentenyl ether have been accomplished using a chiral, pyrrolidine-based and substrate-bound palladium(II)-directing group under neutral reaction conditions. To the best of the author’s knowledge, this P(<i>t</i>-Bu)<sub>3</sub>-mediated method represents the first examples of the successful utilization of aryl and vinyl chlorides in asymmetric Heck reactions. The Heck arylation products formed were hydrolyzed and isolated as the corresponding quaternary 2-aryl-2-methyl cyclopentanones in good to moderate two-step yields with excellent stereoselectivity (90-96% ee). Inclusion of vinyl triflates under neutral reaction conditions and one aryl triflate equipped with a strongly electron-withdrawing <i>para</i>-cyano substituent under cationic conditions increased the preparative usefulness of the methodology.</p><p>Furthermore, diastereoselective Heck arylation of both five- and six-membered cyclic vinyl ethers with aryl bromides, using the identical chiral auxiliary and suitable Pd sources, was performed. Arylated products from the tetra-substituted cyclopentenyl ether were also in this case hydrolyzed to the corresponding 2-aryl-2-methyl cyclopentanones with high to excellent enantioselectivity (85-94% ee). Despite low reaction rates and relatively modest yields, arylation reactions with the tri-substituted cyclohexenyl ether were found to be highly diastereoselective (94-98% de).</p><p>Thus, an attractive supplement to direct Pd(0)-catalyzed α-arylation protocols, particularly when the use of organic chlorides, aryl bromides, and milder reaction conditions are of great importance, have been developed.</p>

Page generated in 0.0787 seconds