• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 74
  • 24
  • 18
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 330
  • 298
  • 230
  • 99
  • 72
  • 64
  • 63
  • 52
  • 47
  • 43
  • 43
  • 41
  • 41
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Friction Stir Welding of Armor Grade Steels

Hawkes, Stanton Brett January 2021 (has links)
No description available.
292

A Comparative Study of 2024-T3 and 7075-T6 Aluminum Alloys Friction Stir Welded with Bobbin and Conventional Tools

Goetze, Paul Aaron 02 May 2019 (has links)
No description available.
293

Development of Prototype Light-weight, Carbon Nanotube Based, Broad Band Electromagnetic Shielded Coaxial Cables

Davis, Kevin M. 15 June 2020 (has links)
No description available.
294

Friction Stir Welding of High-Strength Automotive Steel

Olsen, Eric Michael 05 July 2007 (has links) (PDF)
The following thesis is a study on the ability to create acceptable welds in thin-plate, ultra-high-strength steels (UHSS) by way of friction stir welding (FSW). Steels are welded together to create tailor-welded blanks (TWB) for use in the automotive industry. Dual Phase (DP) 590, 780, and 980 steel as well as Transformation-Induced Plasticity (TRIP) 590 steel with thicknesses ranging from 1.2 mm to 1.8 mm were welded using friction stir welding under a variety of processing conditions, including experiments with dissimilar thicknesses. Samples were tested under tensile loads for initial determination if an acceptable weld had been created. Acceptable welds were created in both TRIP 590 and DP 590 at speeds up to 102 centimeters-per-minute. No acceptable welds were created in the DP 780 and DP 980 materials. A series of microhardness measurements were taken across weld samples to gain understanding as to the causes of failure. These data indicate that softening, caused by both excessive heat and insufficient heat can result in weld failure. Not enough heat causes the high concentration of martensite in these materials to temper while too much heat can cause excessive hardening in the weld, through the formation of even more martensite, which tends to promote failure mode during forming operations. Laser welding is one of the leading methods for creating tailor-welded blank. Therefore, laser welded samples of each material were tested and compared to Friction Stir Welded samples. Lower strength and elongation are measured in weld failure while the failure location itself determines the success of a weld. In short, an acceptable weld is one that breaks outside the weld nugget and Heat Affected Zone (HAZ) and where the tensile strength (both yield and ultimate) along with the elongation are comparable to the base material. In unacceptable welds, the sample broke in the weld nugget or HAZ while strength and elongations were well below those of the base material samples.
295

Investigate Correlations of Microstructures, Mechanical Properties and FSW Process Variables in Friction Stir Welded High Strength Low Alloy 65 Steel

Wei, Lingyun 03 November 2009 (has links) (PDF)
The present study focuses on developing a relationship between process variables, mechanical properties and post weld microstructure in Friction Stir Welded HSLA 65 steel. Fully consolidated welds can be produced in HSLA 65 steel by PCBN Convex-Scrolled-Shoulder-Step-Spiral (CS4) tool over a wide range of parameters. Microstructures in the nugget center (NC) are dominated by lath bainite and a few polygonal/allotriomorphic grain boundary ferrites. FSW dependent variables are related to FSW independent variables by non-linear relationship. Heat input is identified to be the best parameter index to correlate with microstructures. With increasing heat input, the volume of bainite is reduced, the shape of bainite is more curved and grain/lath size become coarser. A linear relationship was established between heat input and semi-quantitative post-weld microstructures based on the optical microstructures. Further analysis has been applied on the NC to obtain more fundamental understanding of FSW. The new approach via Orientation Imaging Microscopy (OIM) was developed to acquire quantitative microstructural data including bainite lath/packet and prior austenite grain size (PAG). A linear relationship between heat input and quantitative microstructural features in the NC have been established. Mechanical properties exhibits linear relationship with heat input. These correlations can be utilized to determine FSW weld parameter to get desired mechanical properties welds.
296

Study on the Fracture Toughness of Friction Stir Welded API X80

Tribe, Allan M. 06 August 2012 (has links) (PDF)
High strength low alloy (HSLA) steels have been developed to simultaneously have high yield strength and high fracture toughness. However, in practical applications steel must be welded. Traditional arc welding has proven detrimental to the fracture toughness of HSLA steels. Friction stir welding has recently shown mixed results in welding HSLA steels. The range of welding parameters used in these recent studies however has been very limited. With only a few welding parameters tested, the effect of spindle speed, travel speed, and heat input on the fracture toughness of friction stir welded HSLA steel remains unknown. To understand how the friction stir welding process parameters affect fracture toughness, double sided welds in API X80 were performed and analyzed. Results show that at room temperature friction stir welded API X80 exceeded industry minimum fracture toughness requirements in both the API Standard 1104 and DNV-OS-F101 by 143% and 62%, respectively. The process parameters of spindle speed and HI have been shown to effectively control the fracture toughness of the stir zone. Relationships have been established that show that fracture toughness increased by 85% when spindle speed decreased by 59% and heat input decreased by 46%.
297

Manipulation and Automation of FBJ Short-Axis Fasteners

Wood, Shane Forrest 01 March 2018 (has links)
Legislative and market pressures are pushing automakers to achieve new fuel economy requirements in the coming years. To help achieve these goals automakers are reducing the overall weight of the vehicle by increasing the use of high-strength aluminum and advanced high-strength steels, and with this increased use comes the desire to quickly, and securely, join these materials within the vehicle. Friction bit joining is a process that lends itself well to joining these materials. This process uses consumable fasteners that need to be used in an automated production line. The geometry of these fasteners causes two main problems: the bits have a short longitudinal axis, which makes them difficult to orient, and the welding platform may be used at different angles; requiring a robust reloading system that is indifferent to its orientation.Our research explored ways that these short axis FBJ fasteners could be handled and transported using various automated methods. We tested the use of small mechanical carriages and magnetic tracks to test their viability for transporting FBJ fasteners. The two different types of fasteners that were used in the project are described. Blow feed tubes ended up being a reliable method of transportation given that the fastener has suitable geometry. The superior bit and feed system design were bench tested using a manually controlled feed system. The system was tested in various orientations to test the robustness of the system since the system was designed to be part of the end effector on a production line robot. The testing revealed that the feed tube is a reliable method of bit transportation and mechanical jaws are a suitable solution for FBJ fastener manipulation. These jaws have several key design features that dramatically increase their effectiveness. Suggestions for future work would be an optimized feed tube cross section, improved material properties in the bit jaw, and more air flow at a higher pressure through the feed tube.
298

Advanced Characterization of Solid-State Dissimilar Material Joints

Lee, Genevieve W. 28 August 2017 (has links)
No description available.
299

Friction Stir Processing Nickel-Base Alloys

Rule, James R. 22 July 2011 (has links)
No description available.
300

[en] ANALYSIS OF THE PARAMETERS OF FRICTION WELDING (FSW) THROUGH THE MEASURES OF TORQUE AND FORCES INVOLVED IN THE PROCESS / [pt] ANÁLISE DOS PARÂMETROS DE SOLDAGEM POR FRICÇÃO (FSW) ATRAVÉS DAS MEDIDAS DE TORQUE E FORÇAS ENVOLVIDAS NO PROCESSO

MARCOS VINICIUS DE OLIVEIRA MARTINS 28 August 2020 (has links)
[pt] A união de materiais por soldagem é um dos processos mais utilizados na fabricação de estruturas. A soldagem traz maior confiabilidade, segurança ao projeto e resistência mecânica das uniões. Atualmente, diversas indústrias, tais como aeronáutica e automotiva, têm procurando utilizar materiais de baixa densidade e alta resistência mecânica, como as ligas de magnésio e de alumínio. Porém, estas ligas dificultam o processo de união através da soldagem convencional, que tem no seu principal fundamento a fusão do material, por possuírem baixa soldabilidade. Nas ligas de Mg e de Al há a formação uma camada de óxido que precisa ser removida durante o processo de soldagem, além de apresentarem grande susceptibilidade a geração de defeitos, tais como trincas e poros durante o processo de resfriamento da solda. A soldagem por fricção ou por mistura mecânica (FSW) foi desenvolvida como uma alternativa às técnicas de soldagem e uso mais comum existente na indústria, pois esta técnica elimina a fusão do material reduzindo, assim, os defeitos que surgiriam com a soldagem convencional. Por ser uma solda de estado sólido, tem a possibilidade de unir materiais dissimilares, polímeros, compósitos, ligas ferrosas e não ferrosas. O presente trabalho buscou avaliar parâmetros de soldagem variando a velocidade de soldagem (ν) e velocidade de rotação da ferramenta (ômega) utilizando uma ferramenta com rosca. Foram analisados o torque e as forças presentes no processo. Os resultados foram comparados com os resultados obtidos com uma ferramenta de soldagem sem rosca. A qualidade da solda foi correlacionada com os parâmetros de soldagem utilizados por meio de ensaios de dureza e tomografia. Foi concluído que a ferramenta com rosca gera defeito de túnel e demanda maior energia do processo em relação ao torque e à força axial. O comportamento das forças envolvidas no processo foi o mesmo para ambas as geometrias de ferramenta. A microdureza ao longo do eixo neutro mostrou a mudança entre a zona de mistura, zona termicamente afetada e o metal de base. / [en] The joining of materials by welding is the process most used in the fabrication of structures. Welding brings greater reliability, safety to the design and mechanical strength of the joints. Today, many industries, such as aeronautics and automotive, are looking to use low density and high mechanical strength materials such as magnesium and aluminum alloys. However, these alloys hinder the bonding process through conventional welding, which has in its main foundation the melting of the material, because they have low weldability. In Mg and Al alloys there is a layer of oxide that needs to be removed during the welding process, besides being very susceptible to the generation of defects, such as cracks and pores during the process of cooling the weld. Friction stir welding (FSW) was developed as an alternative to most commonly used in industry welding techniques, as this technique eliminates melting of the material thus reducing defects that would arise with conventional welding. To being a solid state weld, it has the possibility of joining dissimilar materials, polymers, composites, ferrous and non-ferrous alloys. The present work seeked to evaluate welding parameters by varying the welding speed (ν) and tool rotation (omega) using a threaded tool. The torque and forces were analyzed and the results will be compared with the results obtained with a threadless welding tool. The quality of the weld will be correlated with the welding parameters used by means of hardness test and tomography. It was concluded that the threaded tool generates tunnel defect and demands higher process energy. The behavior of the forces involved in the process was the same for both tool geometries. The microhardness along the neutral axis showed the clear the change between the mixing zone, thermally affected zone and the base metal.

Page generated in 0.1616 seconds