• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 79
  • 17
  • 7
  • Tagged with
  • 334
  • 191
  • 166
  • 73
  • 68
  • 68
  • 68
  • 57
  • 46
  • 41
  • 41
  • 39
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Illustration of stochastic processes and the finite difference method in finance

Kluge, Tino 22 January 2003 (has links)
The presentation shows sample paths of stochastic processes in form of animations. Those stochastic procsses are usually used to model financial quantities like exchange rates, interest rates and stock prices. In the second part the solution of the Black-Scholes PDE using the finite difference method is illustrated. / Der Vortrag zeigt Animationen von Realisierungen stochstischer Prozesse, die zur Modellierung von Groessen im Finanzbereich haeufig verwendet werden (z.B. Wechselkurse, Zinskurse, Aktienkurse). Im zweiten Teil wird die Loesung der Black-Scholes Partiellen Differentialgleichung mittels Finitem Differenzenverfahren graphisch veranschaulicht.
222

Zur Berechnung der Verweilzeitverteilung von Partikeln

Ham, Jong-Ho 24 July 2003 (has links)
Verweilzeitverteilungen werden zur Charakterisierung verfahrenstechnischer und speziell reaktionstechnischer Prozesse herangezogen. In dispersen Systemen existiert für jede Phase eine Verweilzeitverteilung, die sich stark voneinander unterscheiden können. Verweilzeitverteilungen werden häufig auf der Basis des Dispersionsmodells oder mittels einer Rührkesselkaskade beschrieben, wobei die Anpassung nicht immer gut ist. Deshalb werden zunächst halbempirische Gleichungen vorgestellt, die mittels charakteristischen Parametern (mittlere, minimale, maximale Verweilzeit; Exponent) eine flexible Nachbildung erlauben. Die Brauchbarkeit dieser Gleichungen wird für fluide und disperse Phase anhand der Nachrechnung veröffentlichter Verweilzeitverteilungskurven in unterschiedlichen Apparaten nachgewiesen, wobei auch ein Vergleich mit den Ergebnissen anderer Modelle erfolgt. Unter der Annahme einer stationären Sinkgeschwindigkeit gelingt für stark vereinfachte Fälle die Ableitung analytischer Ausdrücke für die Verweilzeitverteilung der dispersen Phase. Realere Fälle werden mit dem stochastischen Modell ZEMP (Zellenmodell mit Platzerwechselwahrscheinlichkeit), das um die Einbeziehung der Relativgeschwindigkeit der Partikeln erweitert wurde, erfasst. Dadurch wird es möglich, den Einfluss des Dispersionskoeffizienten, der Zugabeart, des Geschwindigkeitsprofils und des Vorliegens von Eigenschaftsverteilungen auf die Verweilzeitverteilung separat auszuweisen. Für das sich entwickelnde Geschwindigkeitsprofil des laminar durchströmten Rohrs und Kanals werden Gleichungen aufgestellt, in die die Werte von Literaturen eingingen. Damit wird der Einfluss der Einlaufstrecke auf die sich ausbildende Verweilzeitverteilung ermittelt.
223

Stochastische Charakteristiken von Lösungen parabolischer Randanfangswertprobleme mit zufälligen Koeffizienten

Hähnel, Holger 28 April 2010 (has links)
Im Mittelpunkt dieser Arbeit steht die Untersuchung des stochastischen Verhaltens von Lösungen parabolischer Randanfangswertprobleme mit zufälligen Koeffizienten. Aufgaben dieser Art entstehen beispielsweise bei der mathematischen Modellierung von Wärmeleitprozessen in Materialien, deren Wärmeleitfähigkeit als zufällige Größe bzw. als zufällige Funktion angesehen werden kann. Die Modellierung dieser stochastischen Einflüsse erfolgt u. a. mit Hilfe von epsilon-korrelierten Funktionen. Um stochastische Charakteristiken wie Erwartungswert-, Korrelations- und Varianzfunktion der Lösung des Randanfangswertproblems näherungsweise zu ermitteln, werden die Ansätze der Finite-Elemente-Methode (FEM), der Fouriermethode sowie der Stochastischen Simulation gewählt. Die beiden erstgenannten Verfahren erfahren eine Kombination mit der Methode der Störungsrechnung, wodurch sich jeweils Entwicklungen der gesuchten Charakteristiken bis zur zweiten Ordnung bezüglich eines Störungsparameters ergeben. Konkrete Ergebnisse werden für einfache ein- und zweidimensionale Gebiete ermittelt. Die Anwendung der Störungsrechnung wird im Fall der FEM zudem analytisch gerechtfertigt. Die Methode der Stochastischen Simulation nutzt die Approximation der eingehenden zufälligen Funktion durch Moving-Average-Felder. Für die Auswertung der auftretenden Integrale bei Anwendung der FEM werden explizite Formeln angegeben. Für einige Beispiele im ein- und zweidimensionalen Fall erfolgt die numerische Umsetzung sowie die grafische Präsentation der Ergebnisse sowie deren Vergleich für die verschiedenen eingesetzten Methoden. / This work focuses on the stochastic behavior of solutions of parabolic initial value problems with random coefficients. This sort of tasks is a result of modeling heat conduction processes on material whose heat conductivity can be considered as a random value or a random function. Stochastic influences are modeled, among others, by epsilon correlated functions. In order to determine stochastic characteristics like expectation value function, correlation function, and variance function of the problems solution approximately, the finite element method (FEM), the Fourier method, and the Monte Carlo Simulation are chosen. The first two methods are combined with perturbation techniques. This leads to expansions of the characteristics up to the second order with respect to a perturbation parameter. Results are determined for cases of one and two dimensional domains. The applicability of perturbation methods is verified for the FEM-based solution. The Monte Carlo Simulation uses the approximation of random functions by moving average fields. Explicit formulas are given for the evaluation of integrals which appear by applying the FEM. The work ends with the presenting of numerical examples for the one and two dimensional case.
224

Approximation stochastischer Charakteristiken von Funktionalen schwach korrelierter Prozesse

Ilzig, Katrin 02 June 2010 (has links)
In praktischen Aufgabenstellungen können zur Modellierung zufälliger Einflüsse, welche sich durch schwache Abhängigkeiten auszeichnen, schwach korrelierte zufällige Funktionen genutzt werden. Die nähere Untersuchung von Funktionalen schwach korrelierter zufälliger Funktionen ist durch die Gestalt der Lösungen von praktischen Fragestellungen motiviert. Die stochastischen Charakteristiken dieser Lösungen lassen sich im Allgemeinen nicht exakt bestimmen, so dass auf Approximationsverfahren zurückgegriffen werden muss. Diese stehen im Mittelpunkt der Dissertation. Zu Beginn werden Entwicklungen von Momenten und Kumulanten der betrachteten linearen Integralfunktionale schwach korrelierter Prozesse nach der Korrelationslänge des Prozesses hergeleitet und eine Vermutung über die exakte Darstellung der Kumulanten formuliert. Für Integralfunktionale von schwach korrelierten Simulationsprozessen, welche aus der Interpolation von Moving-Average-Prozessen entstehen, werden die definierten Charakteristiken hergeleitet. Außerdem steht die Approximation der unbekannten Dichtefunktion im Fokus der Arbeit. Es werden verschiedene Zugänge genutzt. Eine alternative Herleitung zur bereits in der Literatur untersuchten Gram-Charlier-Entwicklung wird in Form der Edgeworth-Entwicklung angegeben. Des Weiteren werden die Sattelpunkt-Approximation und die Maximum-Entropie-Methode untersucht und anhand von Simulationsergebnissen für Integralfunktionale von Simulationsprozessen miteinander verglichen. / In engineering applications stochastic influences which are characterized by weak dependencies can be modelled, among others, by weakly correlated random functions. The solutions of such problems shape up as integral functionals of weakly correlated random functions which motivates more detailed investigations. In general the exact calculation of stochastic characteristics of such integral functionals is impossible so that we have to be content with approximation methods this thesis focuses on. At the beginning expansions of moments and cumulants of linear integral functionals of weakly correlated random processes with respect to the correlation length are considered and an explicit formula of cumulants is conjectured. For integral functionals of weakly correlated random simulation processes, defined as interpolations of moving average processes, the required expansion coefficients are derived. Furthermore the approximation of the unknown probability density is requested. In the thesis there are different approaches used. First we state an alternative way to achieve the already known Gram Charlier approximation by means of Edgeworth expansion. Then we study two further methods, namely the saddlepoint approximation and the maximum entropy method and compare them on the basis of simulation results for integral functionals of simulation processes.
225

Solution strategies for stochastic finite element discretizations

Ullmann, Elisabeth 23 June 2008 (has links)
The discretization of the stationary diffusion equation with random parameters by the Stochastic Finite Element Method requires the solution of a highly structured but very large linear system of equations. Depending on the stochastic properties of the diffusion coefficient together with the stochastic discretization we consider three solver cases. If the diffusion coefficient is given by a stochastically linear expansion, e.g. a truncated Karhunen-Loeve expansion, and tensor product polynomial stochastic shape functions are employed, the Galerkin matrix can be transformed to a block-diagonal matrix. For the solution of the resulting sequence of linear systems we study Krylov subspace recycling methods whose success depends on the ordering and grouping of the linear systems as well as the preconditioner. If we use complete polynomials for the stochastic discretization instead, we show that decoupling of the Galerkin matrix with respect to the stochastic degrees of freedom is impossible. For a stochastically nonlinear diffusion coefficient, e.g. a lognormal random field, together with complete polynomials serving as stochastic shape functions, we introduce and test the performance of a new Kronecker product preconditioner, which is not exclusively based on the mean value of the diffusion coefficient.
226

Nonlinear amplification by active sensory hair bundles

Dierkes, Kai 12 August 2010 (has links)
The human sense of hearing is characterized by its exquisite sensitivity, sharp frequency selectivity, and wide dynamic range. These features depend on an active process that in the inner ear boosts vibrations evoked by auditory stimuli. Spontaneous otoacoustic emissions constitute a demonstrative manifestation of this physiologically vulnerable mechanism. In the cochlea, sensory hair bundles transduce sound-induced vibrations into neural signals. Hair bundles can power mechanical movements of their tip, oscillate spontaneously, and operate as tuned nonlinear amplifiers of weak periodic stimuli. Active hair-bundle motility constitutes a promising candidate with respect to the biophysical implementation of the active process underlying human hearing. The responsiveness of isolated hair bundles, however, is seriously hampered by intrinsic fluctuations. In this thesis, we present theoretical and experimental results concerning the noise-imposed limitations of nonlinear amplification by active sensory hair bundles. We analyze the effect of noise within the framework of a stochastic description of hair-bundle dynamics and relate our findings to generic aspects of the stochastic dynamics of oscillatory systems. Hair bundles in vivo are often elastically coupled by overlying gelatinous membranes. In addition to theoretical results concerning the dynamics of elastically coupled hair bundles, we report on an experimental study. We have interfaced dynamic force clamp performed on a hair bundle from the sacculus of the bullfrog with real-time stochastic simulations of hair-bundle dynamics. By means of this setup, we could couple a hair bundle to two virtual neighbors, called cyber clones. Our theoretical and experimental work shows that elastic coupling leads to an effective noise reduction. Coupled hair bundles exhibit an increased coherence of spontaneous oscillations and an enhanced amplification gain. We therefore argue that elastic coupling by overlying membranes constitutes a morphological specialization for reducing the detrimental effect of intrinsic fluctuations.
227

Non-Markovian Dissipative Quantum Mechanics with Stochastic Trajectories

Koch, Werner 12 October 2010 (has links)
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called "the environment" may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until thermalization is reached - is shown to be possible with the presented approach. The properties of the thermalized density are determined and they are ascertained to be independent of the system's initial state. Furthermore, the dependence on the bath's temperature and coupling strength is analyzed and it is demonstrated how a change of the bath parameters can be used to tune the system from the dissociative to the bound regime. A second investigation is conducted for a dissipative tunneling scenario in which a wave packet impinges on a barrier. The dependence of the transmission probability on the initial state's kinetic energy as well as the bath's temperature and coupling strength is computed. For both systems, a comparison with the high-temperature Markovian quantum Brownian limit is performed. The importance of a full non-Markovian treatment is demonstrated as deviations are shown to exist between the two descriptions both in the low temperature cases where they are expected and in some of the high temperature cases where their appearance might not be anticipated as easily.:1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Theory of Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Influence Functional Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Quantum Brownian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Stochastic Unraveling of the Influence Functional . . . . . . . . . . . . . . . 20 2.4 Improved Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Modified Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Guide Trajectory Transformation . . . . . . . . . . . . . . . . . . . . 24 2.5 Obtaining Properly Correlated Stochastic Samples from Filtered White Noise 24 3 Unified Stochastic Trajectory Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Semiclassical Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.1 Guide Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Real Coherent State Center Coordinates . . . . . . . . . . . . . . . . 31 3.1.3 Propagation Scheme Including Stochastic Forces . . . . . . . . . . . 32 3.2 Stochastic Bohmian Mechanics with Complex Action . . . . . . . . . . . . . 33 3.2.1 Hydrodynamic Formulation of Bohmian Mechanics . . . . . . . . . . 33 3.2.2 Bohmian Mechanics with Complex Action . . . . . . . . . . . . . . . 34 3.2.3 Stochastic BOMCA Trajectories . . . . . . . . . . . . . . . . . . . . 38 3.3 Noise Distribution Preserving Removal of Adverse Samples . . . . . . . . . . 39 4 Dissipative Harmonic Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Reservoir Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Harmonic Oscillator Analytic Expectation Values . . . . . . . . . . . . . . . 42 4.2.1 Ohmic Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 Drude Regularized Bath . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Sampling Strategies and Analytic Comparison . . . . . . . . . . . . . . . . . 44 4.4 Limits of the Markovian Approximation . . . . . . . . . . . . . . . . . . . . 45 5 Dissipative Vibrational Dynamics of Diatomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Molecular Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Anharmonic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Transient Non-Markovian Effects . . . . . . . . . . . . . . . . . . . . . . . . 53 5.4 Trapping by Dissipation and Thermalization . . . . . . . . . . . . . . . . . . 53 6 Tunneling with Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 Eckart Barrier Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Dissipative Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3 Investigation of Markovianity . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Appendix A Conventions for Constants, Reservoir Kernels, and Influence Phases 69 Appendix B Stochastic Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 B.1 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 71 B.2 Position Verlet Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 B.3 Runge-Kutta Fourth Order Scheme . . . . . . . . . . . . . . . . . . . . . . . 73 Appendix CMorse Oscillator Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Appendix DPrerequisites of a Successful Stochastic Propagation . . . . . . . . . . . . . . 79 D.1 Hubbard-Stratonovich Transformation . . . . . . . . . . . . . . . . . . . . . 79 D.2 Kernels of the Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 D.2.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 D.2.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 D.2.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 89 D.3 Guide Trajectory Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 90 D.3.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 D.3.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 D.3.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 92 D.4 Computation of Matrix Elements and Expectation Values . . . . . . . . . . 92 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
228

Optimal simulation based design of deficit irrigation experiments

Seidel, Sabine 26 March 2012 (has links)
There is a growing societal concern about excessive water and fertilizer use in agricultural systems. High water productivity while maintaining high crop yields can be achieved with appropriate irrigation scheduling. Moreover, freshwater pollution through nitrogen (N) leaching due to the widespread use of N fertilizers demands for an efficient N fertilization management. However, sustainable crop management requires good knowledge of soil water and N dynamics as well as of crop water and N demand. Crop growth models, which describe physical and physiological processes of crop growth as well as water and matter transport, are considered as powerful tools to assist in the optimization of irrigation and fertilization management. It is of a general nature that the reliability of simulation based predictions depends on the quality and quantity of the data used for model calibration and validation which can be obtained e.g. in field experiments. A lack of data or low data quality for model calibration and validation may cause low performance and large uncertainties in simulation results. The large number of model parameters to be calibrated requires appropriate calibration methods and a sequential calibration strategy. Moreover, a simulation based planning of the field design saves costs and expenditure while supporting maximal outcomes of experiments. An adjustment of crop growth modeling and experiments is required for model improvement and development to reliably predict crop growth and to generalize predicted results. In this research study, a new approach for simulation based optimal experimental design was developed aiming to integrate simulation models, experiments, and optimization methods in one framework for optimal and sustainable irrigation and N fertilization management. The approach is composed of three steps: 1. The preprocessing consists of the calibration and validation of the crop growth model based on existing experimental data, the generation of long time-series of climate data, and the determination of the optimal irrigation control. 2. The implementation comprises the determination and experimental application of the simulation based optimized deficit irrigation and N fertilization schedules and an appropriate experimental data collection. 3. The postprocessing includes the evaluation of the experimental results namely observed yield, water productivity (WP), nitrogen use efficiency (NUE), and economic aspects, as well as a model evaluation. Five main tools were applied within the new approach: an algorithm for inverse model parametrization, a crop growth model for simulating crop growth, water balance and N balance, an optimization algorithm for deficit irrigation and N fertilization scheduling, and a stochastic weather generator. Furthermore, a water flow model was used to determine the optimal irrigation control functions and for simulation based estimation of the optimal field design. The approach was implemented within three case studies presented in this work. The new approach combines crop growth modeling and experiments with stochastic optimization. It contributes to a successful application of crop growth modeling based on an appropriate experimental data collection. The presented model calibration and validation procedure using the collected data facilitates reliable predictions. The stochastic optimization framework for deficit irrigation and N fertilization scheduling proved to be a powerful tool to enhance yield, WP, NUE and profit.:Contents Nomenclature ..............................................................................................................................xii 1 Introduction..................................................................................................................................1 I Fundamentals and literature review ........................................................................................5 2 Water productivity in crop production ....................................................................................7 2.1 Water productivity .................................................................................................................7 2.2 Increase of crop yield ..........................................................................................................9 2.3 Irrigation ...............................................................................................................................10 2.3.1 Irrigation methods ...........................................................................................................10 2.3.2 Irrigation scheduling and irrigation control ................................................................11 2.3.3 The influence of the field design on profitability .......................................................12 2.4 The concept of controlled deficit irrigation ...................................................................14 3 Nitrogen use efficiency in crop production .........................................................................17 3.1 Nitrogen use efficiency ....................................................................................................18 3.2 N fertilization management .............................................................................................18 3.3 Combination of controlled deficit irrigation and deficit N fertilization ......................19 4 Crop growth modeling ............................................................................................................21 4.1 Physiological crop growth models ..................................................................................21 4.1.1 Model description of SVAT model Daisy ....................................................................22 4.1.2 Model description of crop growth model Pilote .........................................................24 4.2 Optimal experimental design for model parametrization ...........................................25 4.2.1 Experimental design ......................................................................................................25 4.2.2 Model parameter estimation ........................................................................................26 4.2.3 Model parameter estimation based on greenhouse data .......................................27 5 Irrigation and N fertilization scheduling ..............................................................................29 5.1 Irrigation scheduling .........................................................................................................29 5.2 N fertilization scheduling .................................................................................................30 5.3 Combination of irrigation and N fertilization scheduling ............................................30 II New approach for simulation based optimal experimental design ................................33 6 Preprocessing steps ...............................................................................................................37 6.1 Model parametrization and assessment .......................................................................37 6.1.1 Calibration of the soil parameters ...............................................................................38 6.1.2 Calibration of the plant parameters ............................................................................39 6.1.3 Model assessment .........................................................................................................41 6.1.4 Preliminary simulations for an optimal experimental layout ..................................43 6.2 Generation of long time-series of climate data ............................................................44 6.3 Determination of the optimal irrigation control functions ...........................................44 7 Stochastic optimization framework ......................................................................................47 7.1 Stochastic optimization framework .................................................................................47 7.1.1 Optimization algorithm ...................................................................................................47 7.1.2 Generation of the crop water (nitrogen) production functions ................................48 7.1.3 Application of the stochastic optimization framework ..............................................48 7.1.4 Crop growth model requirements ................................................................................49 8 Data collection during the experimentation .......................................................................51 9 Postprocessing steps .............................................................................................................55 9.1 Evaluation of the experimental results ...........................................................................55 9.1.1 Yield and total dry matter ..............................................................................................55 9.1.2 Water productivity and nitrogen use efficiency .........................................................55 9.1.3 Economic aspects ..........................................................................................................55 9.1.4 Evaluation of the model results ....................................................................................56 III Application of the new approach to three case studies ...................................................57 10 Evaluation of model transferability ....................................................................................59 10.1 Objectives and summary ................................................................................................59 10.2 Experimental site and experimental setup .................................................................61 10.3 Data collection during the experimentation ................................................................63 10.4 Calibration and validation of the model parameters .................................................63 10.4.1 Model setup and soil parametrization ......................................................................64 10.4.2 Plant parameter calibration and validation .............................................................67 10.5 Application of the stochastic optimization framework ...............................................75 10.5.1 Generation of the climate data ...................................................................................75 10.5.2 Estimation of the yield potential of wheat ................................................................75 10.5.3 Estimation of the water productivity potential of barley .........................................77 10.6 Discussion and conclusions ..........................................................................................81 11 Real-time irrigation scheduling ..........................................................................................83 11.1 Objectives and summary ................................................................................................83 11.2 Experimental site and field design ...............................................................................85 11.3 Data collection during the experiment ........................................................................86 11.4 Calibration and setup of the crop growth model Pilote .............................................87 11.5 Derivation of optimal irrigation control functions for different drip line spacings 88 11.5.1 Initial Hydrus 2D/3D simulations ...............................................................................88 11.5.2 Determination of the irrigation control functions .....................................................89 11.5.3 Verifying measurements ..............................................................................................92 11.6 Real-time deficit irrigation scheduling .........................................................................93 11.7 Evaluation of the experimental results .........................................................................96 11.7.1 Crop yields .....................................................................................................................96 11.7.2 Water productivity .........................................................................................................97 11.7.3 Prognostic simulations ................................................................................................98 11.7.4 Economic aspects ........................................................................................................99 11.8 Discussion and conclusions ........................................................................................100 12 Multicriterial optimization...................................................................................................103 12.1 Objectives and summary .............................................................................................103 12.2 Experimental site and experimental setup ...............................................................105 12.3 Data collection during the experiment ......................................................................105 12.4 Experimental layout ......................................................................................................106 12.5 Calibration and validation of the model parameters ..............................................107 12.5.1 Calibration of the soil parameters ...........................................................................107 12.5.2 Calibration and validation of the plant parameters .............................................107 12.5.3 Setup of SVAT model Daisy .....................................................................................108 12.6 Generation of the climate data ....................................................................................109 12.7 Optimized irrigation and N fertilization scheduling .................................................109 12.8 Evaluation of the experimental results .......................................................................111 12.8.1 Observed plant variables and weather data .........................................................111 12.8.2 Water productivities and nitrogen use efficiencies ...............................................111 12.8.3 Chlorophyll Meter values ..........................................................................................112 12.8.4 Recalculation of soil parameters .............................................................................113 12.9 Postprocessing simulations of yield and water and N dynamics..........................114 12.9.1 Yield predictions using Daisy 1D ............................................................................114 12.9.2 Yield predictions using Daisy 2D ............................................................................119 12.10 Discussion and conclusions .....................................................................................121 IV General discussion, conclusions and outlook ...............................................................123 13 General discussion ............................................................................................................125 14 General conclusions and outlook ....................................................................................133 Appendix ....................................................................................................................................134 A Tables and Figures ...............................................................................................................137 B Model setup and weather files ...........................................................................................145 List of Tables .............................................................................................................................153 List of Figures ............................................................................................................................153 References ................................................................................................................................159 / In der heutigen Gesellschaft gibt es zunehmend Bedenken gegenüber übermäßigem Wasser- und Düngereinsatz in der Landwirtschaft. Eine hohe Wasserproduktivität kann jedoch durch geeignete Bewässerungspläne mit hohen landwirtschaftlichen Erträgen in Einklang gebracht werden. Die mit der weitverbreiteten Stickstoffdüngung einhergehende Gewässerbelastung aufgrund von Stickstoffauswaschung erfordert zudem ein effizientes Stickstoffmanagement. Eine entsprechende ressourceneffiziente Landbewirtschaftung bedarf präzise Kenntnisse der Bodenwasser- und Stickstoffdynamiken sowie des Pflanzenwasser- und Stickstoffbedarfs. Als leistungsfähige Werkzeuge zur Unterstützung bei der Optimierung von Bewässerungs-und Düngungsplänen werden Pflanzenwachstumsmodelle eingesetzt, welche die physischen und physiologischen Prozesse des Pflanzenwachstums sowie die physikalischen Prozesse des Wasser- und Stofftransports abbilden. Hierbei hängt die Zuverlässigkeit dieser simulationsbasierten Vorhersagen von der Qualität und Quantität der bei der Modellkalibrierung und -validierung verwendeten Daten ab, welche beispielsweise in Feldversuchen erfasst werden. Fehlende Daten oder Daten mangelhafter Qualität bei der Modellkalibrierung und -validierung führen zu unzuverlässigen Simulationsergebnissen und großen Unsicherheiten bei der Vorhersage. Die große Anzahl an zu kalibrierenden Parametern erfordert zudem geeignete Kalibrierungsmethoden sowie eine sequenzielle Kalibrierungsstrategie. Darüber hinaus kann eine simulationsbasierte Planung des Versuchsdesigns Kosten und Aufwand reduzieren und zu weiteren experimentellen Erkenntnissen führen. Die Abstimmung von Pflanzenwachstumsmodellen und Versuchen ist zudem für die Modellentwicklung und -verbesserung sowie für eine Verallgemeinerung von Simulationsergebnissen unabdingbar. Im Rahmen dieser Arbeit wurde ein neuer Ansatz für ein simulationsbasiertes optimales Versuchsdesign entwickelt. Ziel war es, Simulationsmodelle, Versuche und Optimierungsmethoden in einem Ansatz für optimales und nachhaltiges Bewässerungs- und Düngungsmanagement zu integrieren. Der Ansatz besteht aus drei Schritten: 1. Die Vorbereitungsphase beinhaltet die auf existierenden Versuchsdaten basierende Kalibrierung und Validierung des Pflanzenwachstumsmodells, die Generierung von Klimazeitreihen und die Bestimmung der optimalen Bewässerungssteuerung. 2. Die Durchführungsphase setzt sich aus der Erstellung und experimentellen Anwendung der simulationsbasierten optimierten Defizitbewässerungs- und Stickstoffdüngungspläne und der Erfassung der relevanten Versuchsdaten zusammen. 3. Die Auswertungsphase schließt eine Evaluierung der Versuchsergebnisse anhand ermittelter Erträge, Wasserproduktivitäten (WP), Stickstoffnutzungseffizienzen (NUE) und ökonomischer Aspekte, sowie eine Modellevaluierung ein. In dem neuen Ansatz kamen im Wesentlichen folgende fünf Werkzeuge zur Anwendung: Ein Algorithmus zur inversen Modellparametrisierung, ein Pflanzenwachstumsmodell, welches das Pflanzenwachstum sowie die Wasser- und Stickstoffbilanzen abbildet, ein evolutionärer Optimierungsalgorithmus für die Generierung von defizitären Bewässerungs- und Stickstoffplänen und ein stochastischer Wettergenerator. Zudem diente ein Bodenwasserströmungsmodell der Ermittlung der optimalen Bewässerungssteuerung und der simulationsbasierten Optimierung des Versuchsdesigns. Der in dieser Arbeit vorgestellte Ansatz wurde in drei Fallbeispielen angewandt. Der neue Ansatz kombiniert Pflanzenwachstumsmodellierung und Experimente mit stochastischer Optimierung. Er leistet einen Beitrag zu einer erfolgreichen Pflanzenwachstumsmodellierung basierend auf der Erfassung relevanter Versuchsdaten. Die vorgestellte Modellkalibrierung und -validierung unter Verwendung der erfassten Versuchsdaten trug wesentlich zu zuverlässigen Simulationsergebnissen bei. Darüber hinaus stellt die hier vorgestellte stochastische Optimierung von defizitären Bewässerungs- und Stickstoffplänen ein leistungsfähiges Werkzeug dar, um Erträge, WP, NUE und den Profit zu erhöhen.:Contents Nomenclature ..............................................................................................................................xii 1 Introduction..................................................................................................................................1 I Fundamentals and literature review ........................................................................................5 2 Water productivity in crop production ....................................................................................7 2.1 Water productivity .................................................................................................................7 2.2 Increase of crop yield ..........................................................................................................9 2.3 Irrigation ...............................................................................................................................10 2.3.1 Irrigation methods ...........................................................................................................10 2.3.2 Irrigation scheduling and irrigation control ................................................................11 2.3.3 The influence of the field design on profitability .......................................................12 2.4 The concept of controlled deficit irrigation ...................................................................14 3 Nitrogen use efficiency in crop production .........................................................................17 3.1 Nitrogen use efficiency ....................................................................................................18 3.2 N fertilization management .............................................................................................18 3.3 Combination of controlled deficit irrigation and deficit N fertilization ......................19 4 Crop growth modeling ............................................................................................................21 4.1 Physiological crop growth models ..................................................................................21 4.1.1 Model description of SVAT model Daisy ....................................................................22 4.1.2 Model description of crop growth model Pilote .........................................................24 4.2 Optimal experimental design for model parametrization ...........................................25 4.2.1 Experimental design ......................................................................................................25 4.2.2 Model parameter estimation ........................................................................................26 4.2.3 Model parameter estimation based on greenhouse data .......................................27 5 Irrigation and N fertilization scheduling ..............................................................................29 5.1 Irrigation scheduling .........................................................................................................29 5.2 N fertilization scheduling .................................................................................................30 5.3 Combination of irrigation and N fertilization scheduling ............................................30 II New approach for simulation based optimal experimental design ................................33 6 Preprocessing steps ...............................................................................................................37 6.1 Model parametrization and assessment .......................................................................37 6.1.1 Calibration of the soil parameters ...............................................................................38 6.1.2 Calibration of the plant parameters ............................................................................39 6.1.3 Model assessment .........................................................................................................41 6.1.4 Preliminary simulations for an optimal experimental layout ..................................43 6.2 Generation of long time-series of climate data ............................................................44 6.3 Determination of the optimal irrigation control functions ...........................................44 7 Stochastic optimization framework ......................................................................................47 7.1 Stochastic optimization framework .................................................................................47 7.1.1 Optimization algorithm ...................................................................................................47 7.1.2 Generation of the crop water (nitrogen) production functions ................................48 7.1.3 Application of the stochastic optimization framework ..............................................48 7.1.4 Crop growth model requirements ................................................................................49 8 Data collection during the experimentation .......................................................................51 9 Postprocessing steps .............................................................................................................55 9.1 Evaluation of the experimental results ...........................................................................55 9.1.1 Yield and total dry matter ..............................................................................................55 9.1.2 Water productivity and nitrogen use efficiency .........................................................55 9.1.3 Economic aspects ..........................................................................................................55 9.1.4 Evaluation of the model results ....................................................................................56 III Application of the new approach to three case studies ...................................................57 10 Evaluation of model transferability ....................................................................................59 10.1 Objectives and summary ................................................................................................59 10.2 Experimental site and experimental setup .................................................................61 10.3 Data collection during the experimentation ................................................................63 10.4 Calibration and validation of the model parameters .................................................63 10.4.1 Model setup and soil parametrization ......................................................................64 10.4.2 Plant parameter calibration and validation .............................................................67 10.5 Application of the stochastic optimization framework ...............................................75 10.5.1 Generation of the climate data ...................................................................................75 10.5.2 Estimation of the yield potential of wheat ................................................................75 10.5.3 Estimation of the water productivity potential of barley .........................................77 10.6 Discussion and conclusions ..........................................................................................81 11 Real-time irrigation scheduling ..........................................................................................83 11.1 Objectives and summary ................................................................................................83 11.2 Experimental site and field design ...............................................................................85 11.3 Data collection during the experiment ........................................................................86 11.4 Calibration and setup of the crop growth model Pilote .............................................87 11.5 Derivation of optimal irrigation control functions for different drip line spacings 88 11.5.1 Initial Hydrus 2D/3D simulations ...............................................................................88 11.5.2 Determination of the irrigation control functions .....................................................89 11.5.3 Verifying measurements ..............................................................................................92 11.6 Real-time deficit irrigation scheduling .........................................................................93 11.7 Evaluation of the experimental results .........................................................................96 11.7.1 Crop yields .....................................................................................................................96 11.7.2 Water productivity .........................................................................................................97 11.7.3 Prognostic simulations ................................................................................................98 11.7.4 Economic aspects ........................................................................................................99 11.8 Discussion and conclusions ........................................................................................100 12 Multicriterial optimization...................................................................................................103 12.1 Objectives and summary .............................................................................................103 12.2 Experimental site and experimental setup ...............................................................105 12.3 Data collection during the experiment ......................................................................105 12.4 Experimental layout ......................................................................................................106 12.5 Calibration and validation of the model parameters ..............................................107 12.5.1 Calibration of the soil parameters ...........................................................................107 12.5.2 Calibration and validation of the plant parameters .............................................107 12.5.3 Setup of SVAT model Daisy .....................................................................................108 12.6 Generation of the climate data ....................................................................................109 12.7 Optimized irrigation and N fertilization scheduling .................................................109 12.8 Evaluation of the experimental results .......................................................................111 12.8.1 Observed plant variables and weather data .........................................................111 12.8.2 Water productivities and nitrogen use efficiencies ...............................................111 12.8.3 Chlorophyll Meter values ..........................................................................................112 12.8.4 Recalculation of soil parameters .............................................................................113 12.9 Postprocessing simulations of yield and water and N dynamics..........................114 12.9.1 Yield predictions using Daisy 1D ............................................................................114 12.9.2 Yield predictions using Daisy 2D ............................................................................119 12.10 Discussion and conclusions .....................................................................................121 IV General discussion, conclusions and outlook ...............................................................123 13 General discussion ............................................................................................................125 14 General conclusions and outlook ....................................................................................133 Appendix ....................................................................................................................................134 A Tables and Figures ...............................................................................................................137 B Model setup and weather files ...........................................................................................145 List of Tables .............................................................................................................................153 List of Figures ............................................................................................................................153 References ................................................................................................................................159
229

Large Deviations for Brownian Intersection Measures

Mukherjee, Chiranjib 27 July 2011 (has links)
We consider p independent Brownian motions in ℝd. We assume that p ≥ 2 and p(d- 2) < d. Let ℓt denote the intersection measure of the p paths by time t, i.e., the random measure on ℝd that assigns to any measurable set A ⊂ ℝd the amount of intersection local time of the motions spent in A by time t. Earlier results of Chen derived the logarithmic asymptotics of the upper tails of the total mass ℓt(ℝd) as t →∞. In this paper, we derive a large-deviation principle for the normalised intersection measure t-pℓt on the set of positive measures on some open bounded set B ⊂ ℝd as t →∞ before exiting B. The rate function is explicit and gives some rigorous meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-Varadhan principle for the latter applicable to the intersection measure. A second version of our principle is proved for the motions observed until the individual exit times from B, conditional on a large total mass in some compact set U ⊂ B. This extends earlier studies on the intersection measure by König and Mörters.
230

The Eukaryotic Chromatin Computer: Components, Mode of Action, Properties, Tasks, Computational Power, and Disease Relevance

Arnold, Christian 14 February 2014 (has links)
Eukaryotic genomes are typically organized as chromatin, the complex of DNA and proteins that forms chromosomes within the cell\\\''s nucleus. Chromatin has pivotal roles for a multitude of functions, most of which are carried out by a complex system of covalent chemical modifications of histone proteins. The propagation of patterns of these histone post-translational modifications across cell divisions is particularly important for maintenance of the cell state in general and the transcriptional program in particular. The discovery of epigenetic inheritance phenomena - mitotically and/or meiotically heritable changes in gene function resulting from changes in a chromosome without alterations in the DNA sequence - was remarkable because it disproved the assumption that information is passed to daughter cells exclusively through DNA. However, DNA replication constitutes a dramatic disruption of the chromatin state that effectively amounts to partial erasure of stored information. To preserve its epigenetic state the cell reconstructs (at least part of) the histone post-translational modifications by means of processes that are still very poorly understood. A plausible hypothesis is that the different combinations of reader and writer domains in histone-modifying enzymes implement local rewriting rules that are capable of \\\"recomputing\\\" the desired parental patterns of histone post-translational modifications on the basis of the partial information contained in that half of the nucleosomes that predate replication. It is becoming increasingly clear that both information processing and computation are omnipresent and of fundamental importance in many fields of the natural sciences and the cell in particular. The latter is exemplified by the increasingly popular research areas that focus on computing with DNA and membranes. Recent work suggests that during evolution, chromatin has been converted into a powerful cellular memory device capable of storing and processing large amounts of information. Eukaryotic chromatin may therefore also act as a cellular computational device capable of performing actual computations in a biological context. A recent theoretical study indeed demonstrated that even relatively simple models of chromatin computation are computationally universal and hence conceptually more powerful than gene regulatory networks. In the first part of this thesis, I establish a deeper understanding of the computational capacities and limits of chromatin, which have remained largely unexplored. I analyze selected biological building blocks of the chromatin computer and compare it to system components of general purpose computers, particularly focusing on memory and the logical and arithmetical operations. I argue that it has a massively parallel architecture, a set of read-write rules that operate non-deterministically on chromatin, the capability of self-modification, and more generally striking analogies to amorphous computing. I therefore propose a cellular automata-like 1-D string as its computational paradigm on which sets of local rewriting rules are applied asynchronously with time-dependent probabilities. Its mode of operation is therefore conceptually similar to well-known concepts from the complex systems theory. Furthermore, the chromatin computer provides volatile memory with a massive information content that can be exploited by the cell. I estimate that its memory size lies in the realms of several hundred megabytes of writable information per cell, a value that I compare with DNA itself and cis-regulatory modules. I furthermore show that it has the potential to not only perform computations in a biological context but also in a strict informatics sense. At least theoretically it may therefore be used to calculate any computable function or algorithm more generally. Chromatin is therefore another representative of the growing number of non-standard computing examples. As an example for a biological challenge that may be solved by the \\\"chromatin computer\\\", I formulate epigenetic inheritance as a computational problem and develop a flexible stochastic simulation system for the study of recomputation-based epigenetic inheritance of individual histone post-translational modifications. The implementation uses Gillespie\\\''s stochastic simulation algorithm for exactly simulating the time evolution of the chemical master equation of the underlying stochastic process. Furthermore, it is efficient enough to use an evolutionary algorithm to find a system of enzymes that can stably maintain a particular chromatin state across multiple cell divisions. I find that it is easy to evolve such a system of enzymes even without explicit boundary elements separating differentially modified chromatin domains. However, the success of this task depends on several previously unanticipated factors such as the length of the initial state, the specific pattern that should be maintained, the time between replications, and various chemical parameters. All these factors also influence the accumulation of errors in the wake of cell divisions. Chromatin-regulatory processes and epigenetic (inheritance) mechanisms constitute an intricate and sensitive system, and any misregulation may contribute significantly to various diseases such as Alzheimer\\\''s disease. Intriguingly, the role of epigenetics and chromatin-based processes as well as non-coding RNAs in the etiology of Alzheimer\\\''s disease is increasingly being recognized. In the second part of this thesis, I explicitly and systematically address the two hypotheses that (i) a dysregulated chromatin computer plays important roles in Alzheimer\\\''s disease and (ii) Alzheimer\\\''s disease may be considered as an evolutionarily young disease. In summary, I found support for both hypotheses although for hypothesis 1, it is very difficult to establish causalities due to the complexity of the disease. However, I identify numerous chromatin-associated, differentially expressed loci for histone proteins, chromatin-modifying enzymes or integral parts thereof, non-coding RNAs with guiding functions for chromatin-modifying complexes, and proteins that directly or indirectly influence epigenetic stability (e.g., by altering cell cycle regulation and therefore potentially also the stability of epigenetic states). %Notably, we generally observed enrichment of probes located in non-coding regions, particularly antisense to known annotations (e.g., introns). For the identification of differentially expressed loci in Alzheimer\\\''s disease, I use a custom expression microarray that was constructed with a novel bioinformatics pipeline. Despite the emergence of more advanced high-throughput methods such as RNA-seq, microarrays still offer some advantages and will remain a useful and accurate tool for transcriptome profiling and expression studies. However, it is non-trivial to establish an appropriate probe design strategy for custom expression microarrays because alternative splicing and transcription from non-coding regions are much more pervasive than previously appreciated. To obtain an accurate and complete expression atlas of genomic loci of interest in the post-ENCODE era, this additional transcriptional complexity must be considered during microarray design and requires well-considered probe design strategies that are often neglected. This encompasses, for example, adequate preparation of a set of target sequences and accurate estimation of probe specificity. With the help of this pipeline, two custom-tailored microarrays have been constructed that include a comprehensive collection of non-coding RNAs. Additionally, a user-friendly web server has been set up that makes the developed pipeline publicly available for other researchers. / Eukaryotische Genome sind typischerweise in Form von Chromatin organisiert, dem Komplex aus DNA und Proteinen, aus dem die Chromosomen im Zellkern bestehen. Chromatin hat lebenswichtige Funktionen in einer Vielzahl von Prozessen, von denen die meisten durch ein komplexes System von kovalenten Modifikationen an Histon-Proteinen ablaufen. Muster dieser Modifikationen sind wichtige Informationsträger, deren Weitergabe über die Zellteilung hinaus an beide Tochterzellen besonders wichtig für die Aufrechterhaltung des Zellzustandes im Allgemeinen und des Transkriptionsprogrammes im Speziellen ist. Die Entdeckung von epigenetischen Vererbungsphänomenen - mitotisch und/oder meiotisch vererbbare Veränderungen von Genfunktionen, hervorgerufen durch Veränderungen an Chromosomen, die nicht auf Modifikationen der DNA-Sequenz zurückzuführen sind - war bemerkenswert, weil es die Hypothese widerlegt hat, dass Informationen an Tochterzellen ausschließlich durch DNA übertragen werden. Die Replikation der DNA erzeugt eine dramatische Störung des Chromatinzustandes, welche letztendlich ein partielles Löschen der gespeicherten Informationen zur Folge hat. Um den epigenetischen Zustand zu erhalten, muss die Zelle Teile der parentalen Muster der Histonmodifikationen durch Prozesse rekonstruieren, die noch immer sehr wenig verstanden sind. Eine plausible Hypothese postuliert, dass die verschiedenen Kombinationen der Lese- und Schreibdomänen innerhalb von Histon-modifizierenden Enzymen lokale Umschreibregeln implementieren, die letztendlich das parentale Modifikationsmuster der Histone neu errechnen. Dies geschieht auf Basis der partiellen Informationen, die in der Hälfte der vererbten Histone gespeichert sind. Es wird zunehmend klarer, dass sowohl Informationsverarbeitung als auch computerähnliche Berechnungen omnipräsent und in vielen Bereichen der Naturwissenschaften von fundamentaler Bedeutung sind, insbesondere in der Zelle. Dies wird exemplarisch durch die zunehmend populärer werdenden Forschungsbereiche belegt, die sich auf computerähnliche Berechnungen mithilfe von DNA und Membranen konzentrieren. Jüngste Forschungen suggerieren, dass sich Chromatin während der Evolution in eine mächtige zelluläre Speichereinheit entwickelt hat und in der Lage ist, eine große Menge an Informationen zu speichern und zu prozessieren. Eukaryotisches Chromatin könnte also als ein zellulärer Computer agieren, der in der Lage ist, computerähnliche Berechnungen in einem biologischen Kontext auszuführen. Eine theoretische Studie hat kürzlich demonstriert, dass bereits relativ simple Modelle eines Chromatincomputers berechnungsuniversell und damit mächtiger als reine genregulatorische Netzwerke sind. Im ersten Teil meiner Dissertation stelle ich ein tieferes Verständnis des Leistungsvermögens und der Beschränkungen des Chromatincomputers her, welche bisher größtenteils unerforscht waren. Ich analysiere ausgewählte Grundbestandteile des Chromatincomputers und vergleiche sie mit den Komponenten eines klassischen Computers, mit besonderem Fokus auf Speicher sowie logische und arithmetische Operationen. Ich argumentiere, dass Chromatin eine massiv parallele Architektur, eine Menge von Lese-Schreib-Regeln, die nicht-deterministisch auf Chromatin operieren, die Fähigkeit zur Selbstmodifikation, und allgemeine verblüffende Ähnlichkeiten mit amorphen Berechnungsmodellen besitzt. Ich schlage deswegen eine Zellularautomaten-ähnliche eindimensionale Kette als Berechnungsparadigma vor, auf dem lokale Lese-Schreib-Regeln auf asynchrone Weise mit zeitabhängigen Wahrscheinlichkeiten ausgeführt werden. Seine Wirkungsweise ist demzufolge konzeptionell ähnlich zu den wohlbekannten Theorien von komplexen Systemen. Zudem hat der Chromatincomputer volatilen Speicher mit einem massiven Informationsgehalt, der von der Zelle benutzt werden kann. Ich schätze ab, dass die Speicherkapazität im Bereich von mehreren Hundert Megabytes von schreibbarer Information pro Zelle liegt, was ich zudem mit DNA und cis-regulatorischen Modulen vergleiche. Ich zeige weiterhin, dass ein Chromatincomputer nicht nur Berechnungen in einem biologischen Kontext ausführen kann, sondern auch in einem strikt informatischen Sinn. Zumindest theoretisch kann er deswegen für jede berechenbare Funktion benutzt werden. Chromatin ist demzufolge ein weiteres Beispiel für die steigende Anzahl von unkonventionellen Berechnungsmodellen. Als Beispiel für eine biologische Herausforderung, die vom Chromatincomputer gelöst werden kann, formuliere ich die epigenetische Vererbung als rechnergestütztes Problem. Ich entwickle ein flexibles Simulationssystem zur Untersuchung der epigenetische Vererbung von individuellen Histonmodifikationen, welches auf der Neuberechnung der partiell verlorengegangenen Informationen der Histonmodifikationen beruht. Die Implementierung benutzt Gillespies stochastischen Simulationsalgorithmus, um die chemische Mastergleichung der zugrundeliegenden stochastischen Prozesse über die Zeit auf exakte Art und Weise zu modellieren. Der Algorithmus ist zudem effizient genug, um in einen evolutionären Algorithmus eingebettet zu werden. Diese Kombination erlaubt es ein System von Enzymen zu finden, dass einen bestimmten Chromatinstatus über mehrere Zellteilungen hinweg stabil vererben kann. Dabei habe ich festgestellt, dass es relativ einfach ist, ein solches System von Enzymen zu evolvieren, auch ohne explizite Einbindung von Randelementen zur Separierung differentiell modifizierter Chromatindomänen. Dennoch ängt der Erfolg dieser Aufgabe von mehreren bisher unbeachteten Faktoren ab, wie zum Beispiel der Länge der Domäne, dem bestimmten zu vererbenden Muster, der Zeit zwischen Replikationen sowie verschiedenen chemischen Parametern. Alle diese Faktoren beeinflussen die Anhäufung von Fehlern als Folge von Zellteilungen. Chromatin-regulatorische Prozesse und epigenetische Vererbungsmechanismen stellen ein komplexes und sensitives System dar und jede Fehlregulation kann bedeutend zu verschiedenen Krankheiten, wie zum Beispiel der Alzheimerschen Krankheit, beitragen. In der Ätiologie der Alzheimerschen Krankheit wird die Bedeutung von epigenetischen und Chromatin-basierten Prozessen sowie nicht-kodierenden RNAs zunehmend erkannt. Im zweiten Teil der Dissertation adressiere ich explizit und auf systematische Art und Weise die zwei Hypothesen, dass (i) ein fehlregulierter Chromatincomputer eine wichtige Rolle in der Alzheimerschen Krankheit spielt und (ii) die Alzheimersche Krankheit eine evolutionär junge Krankheit darstellt. Zusammenfassend finde ich Belege für beide Hypothesen, obwohl es für erstere schwierig ist, aufgrund der Komplexität der Krankheit Kausalitäten zu etablieren. Dennoch identifiziere ich zahlreiche differentiell exprimierte, Chromatin-assoziierte Bereiche, wie zum Beispiel Histone, Chromatin-modifizierende Enzyme oder deren integrale Bestandteile, nicht-kodierende RNAs mit Führungsfunktionen für Chromatin-modifizierende Komplexe oder Proteine, die direkt oder indirekt epigenetische Stabilität durch veränderte Zellzyklus-Regulation beeinflussen. Zur Identifikation von differentiell exprimierten Bereichen in der Alzheimerschen Krankheit benutze ich einen maßgeschneiderten Expressions-Microarray, der mit Hilfe einer neuartigen Bioinformatik-Pipeline erstellt wurde. Trotz des Aufkommens von weiter fortgeschrittenen Hochdurchsatzmethoden, wie zum Beispiel RNA-seq, haben Microarrays immer noch einige Vorteile und werden ein nützliches und akkurates Werkzeug für Expressionsstudien und Transkriptom-Profiling bleiben. Es ist jedoch nicht trivial eine geeignete Strategie für das Sondendesign von maßgeschneiderten Expressions-Microarrays zu finden, weil alternatives Spleißen und Transkription von nicht-kodierenden Bereichen viel verbreiteter sind als ursprünglich angenommen. Um ein akkurates und vollständiges Bild der Expression von genomischen Bereichen in der Zeit nach dem ENCODE-Projekt zu bekommen, muss diese zusätzliche transkriptionelle Komplexität schon während des Designs eines Microarrays berücksichtigt werden und erfordert daher wohlüberlegte und oft ignorierte Strategien für das Sondendesign. Dies umfasst zum Beispiel eine adäquate Vorbereitung der Zielsequenzen und eine genaue Abschätzung der Sondenspezifität. Mit Hilfe der Pipeline wurden zwei maßgeschneiderte Expressions-Microarrays produziert, die beide eine umfangreiche Sammlung von nicht-kodierenden RNAs beinhalten. Zusätzlich wurde ein nutzerfreundlicher Webserver programmiert, der die entwickelte Pipeline für jeden öffentlich zur Verfügung stellt.

Page generated in 0.1038 seconds