• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Handling Big Data using a Distributed Search Engine : Preparing Log Data for On-Demand Analysis

Ekman, Niklas January 2017 (has links)
Big data are datasets that is very large and computational complex. With an increasing volume of data the time a trivial processing task can be challenging. Companies collects data at a fast rate but knowing what to do with the data can be hard. A search engine is a system that indexes data making it efficiently queryable by users. When a bug occurs in a computer system log data is consulted in order to understand why, but processing big log data can take a long time. The purpose of this thesis is to investigate, compare and implement a distributed search engine that can prepare log data for analysis, which will make it easier for a developer to investigate bugs. There are three popular search engines: Apache Lucene, Elasticsearch and Apache Solr. Elasticsearch and Apache Solr are built as distributed systems making them capable of handling big data. Requirements was established through interviews. Big log data of totally 40 GB was provided that would be indexed in the selected search engine. The log data provided was generated in a proprietary binary format and it had to be decoded before. The distributed search engines was evaluated based on: Distributed architecture, text analysis, indexing and querying. Elasticsearch was selected for implementation. A cluster was set up on Amazon Web Services and tests was executed in order to determine how different configurations performed. An indexing software was written that would transfer data to the cluster. Results was verified through a case-study with participants of the stakeholder. / Stordata är en datamängd som är mycket stora och komplexa att göra beräkningar på. När en datamängd ökar blir en trivial bearbetningsuppgift betydligt mera utmanande. Företagen samlar idag in data i allt snabbare takt men det är svårt att veta exakt vad man ska göra med den data. En sökmotor är ett system som indexerar data och gör det effektivt att för användare att söka i det. När ett fel inträffar i ett datorsystem går utvecklare igenom loggdata för att få en insikt i varför, men det kan ta lång tid att söka igenom en stor mängd loggdata. Syftet med denna avhandling är att undersöka, jämföra och implementera en distribuerad sökmotor som kan förbereda loggdata för analys, vilket gör det lättare för utvecklare att undersöka buggar. Det finns tre populära sökmotorer: Apache Lucene, Elasticsearch och Apache Solr. Elasticsearch och Apache Solr är byggda som distribuerade system och kan därav hantera stordata. Krav fastställdes genom intervjuer. En stor mängd loggdata på totalt 40 GB indexerades i den valda sökmotorn. Den loggdata som användes genererades i en proprietär binärt format som behövdes avkodas för att kunna användas. De distribuerade sökmotorerna utvärderades utifrån kriterierna: Distribuerad arkitektur, textanalys, indexering och förfrågningar. Elasticsearch valdes för att implementeras. Ett kluster sattes upp på Amazon Web Services och test utfördes för att bestämma hur olika konfigurationer presterade. En indexeringsprogramvara skrevs som skulle överföra data till klustret. Resultatet verifierades genom en studie med deltagare från intressenten.
2

Konsulters beskrivning av Big Data och dess koppling till Business Intelligence

Besson, Henrik January 2012 (has links)
De allra flesta av oss kommer ständigt i kontakt med olika dataflöden vilket har blivit en helt naturlig del av vårt nutida informationssamhälle. Dagens företag agerar i en ständigt föränderlig omvärld, och hantering av data och information har blivit en allt viktigare konkurrensfaktor. Detta i takt med att den totala datamängden i den digitala världen har ökat kraftigt de senaste åren. En benämning för gigantiska datamängder är Big Data, som har blivit ett populärt begrepp inom IT-branschen. Big Data kommer med helt nya analysmöjligheter, men det har visat sig att många företag är oroliga för hur de ska hantera och ta tillvara på de växande datamängderna. Syftet med denna studie har varit att ge ett kunskapsbidrag till det relativt outforskade Big Data området, detta utifrån en induktiv ansats med utgångspunkten ur intervjuer. Den problematik som kommit med Big Data beskrivs oftast ur tre perspektiv; där data förekommer i stora volymer, med varierande data-typer och källor, samt att data genereras med olika hastighet. Det framgick av studiens resultat att Big Data som begrepp berör många olika områden och det kan variera väldigt mycket mellan företag inom olika branscher vad gäller betydelse, förmåga, ambition och omfattning. De traditionella teknologierna för datalagring och utvinning är inte tillräckliga för att hantera data som benämns som Big Data. I samband med att ny teknologi tagits fram och äldre lösningar uppgraderats, har detta dock lett till att det nu går att se informationshantering och analysarbete i helt nya perspektiv. Eftersom Big Data huvudsakligen har samma syfte som området Business Intelligence, kan dessa lösningar lämpligen integreras. En mycket stor utmaning med Big Data är att det inte är möjligt att exakt veta vad som kommer att uppnås med datainsamling och analys. Efter att data har samlats in bör ett business case tas fram med riktlinjer för vad som ska uppnås. Det finns en stor potential i denna uppgående marknad som, trots allt, är relativt omogen. Informationshantering kommer att bli allt viktigare framöver och för företagen handlar det om att hänga med i snabba utvecklingen och skaffa sig en bra förståelse för nya trender i IT-världen.
3

Datadriven affärsanalys : en studie om värdeskapande mekanismer / Data-driven business analysis : a study about value creating mechanisms

Adamsson, Anton, Jönsson, Julius January 2021 (has links)
Affärsanalys är en ökande trend som många organisationer idag använder på grund av potentialen att fastställa värdefulla insikter, ökad lönsamhet och förbättrad operativ effektivitet. Något som visat sig vara problematiskt då det önskade resultatet inte alltid är en självklarhet. Syftet med studien är att undersöka hur modeföretag kan använda datadriven affärsanalys för att generera positiva insikter genom värdeskapande mekanismer. Utifrån semistrukturerade intervjuer med anställda på ett modeföretag har vi, med utgångspunkt i tidigare forskning, kartlagt hur datadriven affärsanalys brukas för att skapa värde genom att applicera en processmodell på verksamheten. Empirin resulterade i tre värdefulla insikter (1) Det studerade företaget använder affärsanalys för ökad lönsamhet (2) Företagets data tillgångar är tillräckliga för att utvinna värdefulla insikter (3) Vidare såg vi att företaget arbetar med influencers vilket är en ny affärsanalys-funktion som inte definierats i tidigare forskning. / Business analysis is an increasingly popular trend that many organisations use because of its potential to establish valuable insights, increased profitability and improved operational efficiency. Something that has proved to be rather problematic as the desired results rarely is a certainty. The purpose of the study is to examine how fashion retailers can use business analytics to generate positive insights through value-creating mechanisms by applying a process model. Based on semi-structured interviews with the employees of a fashion company and a starting point in previous research, we have mapped how business analysis can be used to obtain value. The empirical study resulted in three valuable insights (1) The examined organisation uses business analysis to increase profitability. (2) The data assets of the organisation are enough to acquire valuable insights. (3) Further we discovered that the organisation uses influencers as a valuable asset and can be categorised as a business analysis capability, previously undefined in preceding research.

Page generated in 0.0465 seconds