• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 17
  • 17
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Strain Path Effect on Austenite Transformation and Ductility in TBF 1180 Steel

Gibbs, Parker Kenneth 01 March 2019 (has links)
TBF 1180 steel was studied under various conditions focusing on the correlation of ductility and amount of retained austenite. Samples were prepared from sheet stock and then strained using limiting dome height tooling (LDH), a standard uniaxial test frame, and a tensile stage for use in an electron microscope. The steel was observed in plane, biaxial, and uniaxial strain to determine its effect on retained austenite transformation and ultimately, ductility. Retained austenite was observed using a scanning electron microscope (SEM) equipped with an electron backscatter detector (EBSD) to distinguish the different phases present. Initial austenite levels were around 5% by volume and was quickly reduced as the sample was strained. The biaxial samples were the slowest to transform, having about 2.5% austenite at .05 effective strain, which allowed the specimen to reach an effective strain of .3 with 1.1% austenite remaining. In contrast, the plane strain samples had the fastest rate of transformation having only 1.2% austenite at .05 effective strain and .7% austenite at a final effective strain of .18. Both forms of uniaxial, (in-situ and ex-situ), were near identical, as expected, and exhibited an austenite transformation curve between that of the plane and biaxial curves. The uniaxial austenite level at .05 strain was 2.1% and was able to reach about .15 strain with a final austenite percentage around 1%. It was concluded that the biaxial strain path had the greatest ductility due in part to its slower austenite transformation rate while plane and uniaxial strain paths were not as ductile with their faster austenite transformation rates.
12

Static liquefaction of sand with a small amount of fines

Bobei, Doru, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
[Formulae and special characters can not be reproduced here. Please see the pdf version of the Abstract for an accurate reproduction.] The thesis provides a comprehensive study on the behaviour of sand with a small amount of fines [i.e.1/3 plastic fines and 2/3 non-plastic fines]. The work is carried out experimentally under axi-symmetric conditions using the triaxial apparatus. Conventional drained triaxial tests are conducted on isotropic consolidated specimens and all the tests indicate that sand with fines does not manifest any unusual behaviour under drained conditions. However in undrained shearing the so-called ???reverse behaviour??? is noted. The study demonstrates that the reverse behaviour conforms to the critical state framework because significant changes in the position and geometry of the critical state [CS] and isotropic consolidation [IL] lines are caused by the presence of fines. These changes cannot be adequately modelled by the intergranular void ratio as proposed by Thevanayagam and Mohan (2000). This study also demonstrates that the original state parameter [special character] as proposed by Been and Jefferies (1985) is not an adequate parameter to predict the undrained behaviour trend. A new parameter termed ???modified state parameter??? [special character] is proposed to account for the combined effects of density and confining pressure. The suitability of the modified state parameter to characterise the response of parent sand and sand with fines is assessed for a range of void ratios and confining pressures. The effect of drained stress history is an important factor affecting the subsequent undrained response. Drained pre-shearing to failure is found to improve considerably the subsequent undrained response to the extent that liquefaction may not occur. Different drained pre-shearing histories have different effects on the undrained response. However in these tests [special character] has limitations in quantifying the subsequent undrained stress-strain response. Hence, a new framework of ???yielding parameter??? [special character] extends the capability of [special character] and additional data is presented to demonstrate the suitability of this concept. The implementation of [special character] depends on whether the previous stress state reached during the stress history is below or at failure. The effects of drained pre-shearing on the position and movement of failure surface are investigated. It is found that drained pre-shearing to failure at larger confining pressures has the effect of shifting upwards part of the drained failure surface. The shift at larger stress ratios [special character] may be described in terms of dilatancy and modified state parameter at failure. The so-called strain path tests are conducted to study the influence of strain increment ratio on the deformation behaviour of sand with fines. It is found that the value of [special character] has significant effects on the stress-strain behaviour. Along negative [special character] paths the soil strain softens in the form of decreasing the shear resistance before reaching the failure state. In contrast, along positive [special character] paths the soil strain hardens to an asymptotic stress ratio. The asymptotic stress ratio decreases with increasing [special character] along a linear relationship. The framework of [special character] cannot quantify the stress-strain response along positive and negative strain paths. Consequently an ???instability parameter??? [special character] is proposed to extend the capabilities of [special character] and the reliability of this parameter is further assessed. The behaviour along a range of positive and negative [special character] paths is investigated on pre-sheared specimens. In negative [special character] the effective stress paths reach a surface located higher than the monotonic failure surface on which they trace downward towards the origin of stress space. The results indicate this surface may be the same as the drained failure envelope which has been shifted as a result of drained pre-shearing. In positive [special character] paths a large improvement is noted in both the strength and stiffness of the soil. Note The parameters [special character] and [special character] are all generalisations of [special character] so that the behaviour under complex conditions can be characterised.
13

Static liquefaction of sand with a small amount of fines

Bobei, Doru, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
[Formulae and special characters can not be reproduced here. Please see the pdf version of the Abstract for an accurate reproduction.] The thesis provides a comprehensive study on the behaviour of sand with a small amount of fines [i.e.1/3 plastic fines and 2/3 non-plastic fines]. The work is carried out experimentally under axi-symmetric conditions using the triaxial apparatus. Conventional drained triaxial tests are conducted on isotropic consolidated specimens and all the tests indicate that sand with fines does not manifest any unusual behaviour under drained conditions. However in undrained shearing the so-called ???reverse behaviour??? is noted. The study demonstrates that the reverse behaviour conforms to the critical state framework because significant changes in the position and geometry of the critical state [CS] and isotropic consolidation [IL] lines are caused by the presence of fines. These changes cannot be adequately modelled by the intergranular void ratio as proposed by Thevanayagam and Mohan (2000). This study also demonstrates that the original state parameter [special character] as proposed by Been and Jefferies (1985) is not an adequate parameter to predict the undrained behaviour trend. A new parameter termed ???modified state parameter??? [special character] is proposed to account for the combined effects of density and confining pressure. The suitability of the modified state parameter to characterise the response of parent sand and sand with fines is assessed for a range of void ratios and confining pressures. The effect of drained stress history is an important factor affecting the subsequent undrained response. Drained pre-shearing to failure is found to improve considerably the subsequent undrained response to the extent that liquefaction may not occur. Different drained pre-shearing histories have different effects on the undrained response. However in these tests [special character] has limitations in quantifying the subsequent undrained stress-strain response. Hence, a new framework of ???yielding parameter??? [special character] extends the capability of [special character] and additional data is presented to demonstrate the suitability of this concept. The implementation of [special character] depends on whether the previous stress state reached during the stress history is below or at failure. The effects of drained pre-shearing on the position and movement of failure surface are investigated. It is found that drained pre-shearing to failure at larger confining pressures has the effect of shifting upwards part of the drained failure surface. The shift at larger stress ratios [special character] may be described in terms of dilatancy and modified state parameter at failure. The so-called strain path tests are conducted to study the influence of strain increment ratio on the deformation behaviour of sand with fines. It is found that the value of [special character] has significant effects on the stress-strain behaviour. Along negative [special character] paths the soil strain softens in the form of decreasing the shear resistance before reaching the failure state. In contrast, along positive [special character] paths the soil strain hardens to an asymptotic stress ratio. The asymptotic stress ratio decreases with increasing [special character] along a linear relationship. The framework of [special character] cannot quantify the stress-strain response along positive and negative strain paths. Consequently an ???instability parameter??? [special character] is proposed to extend the capabilities of [special character] and the reliability of this parameter is further assessed. The behaviour along a range of positive and negative [special character] paths is investigated on pre-sheared specimens. In negative [special character] the effective stress paths reach a surface located higher than the monotonic failure surface on which they trace downward towards the origin of stress space. The results indicate this surface may be the same as the drained failure envelope which has been shifted as a result of drained pre-shearing. In positive [special character] paths a large improvement is noted in both the strength and stiffness of the soil. Note The parameters [special character] and [special character] are all generalisations of [special character] so that the behaviour under complex conditions can be characterised.
14

Amorçage des fissures de corrosion sous contrainte dans les aciers inoxydables austénitiques pré-déformés et exposés au milieu primaire des réacteurs à eau sous pression / Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

Huguenin, Pauline 21 December 2012 (has links)
Les aciers inoxydables austénitiques de type 304L et 316L sont largement employés dans le circuit primaire des centrales nucléaires à Réacteurs à Eau sous Pression (REP). Le retour d'expérience indique la présence d'un nombre limité de fissures intergranulaires dues à la corrosion sous contrainte (CSC) sur des composants en acier inoxydable écroui. Il a été démontré qu'une pré-déformation importante associée à un chargement cyclique favorise la propagation des fissures de CSC. L'objectif de l'étude est d'améliorer la compréhension du rôle de la pré-déformation par traction ou par laminage sur les mécanismes d'amorçage de la CSC pour les aciers inoxydables austénitiques. Le comportement mécanique des matériaux écrouis a été caractérisé et des essais d'amorçage en milieu primaire simulé ont été réalisés sur des éprouvettes entaillées. L'ensemble des essais d'amorçage réalisés a confirmé un fort effet du trajet de chargement sur la sensibilité à l'amorçage des matériaux étudiés, quel que soit le niveau de pré-déformation. Un critère global a été proposé pour réunir les deux aspects de l'amorçage de la fissuration que sont la densité de fissures et leur profondeur. Ce critère est utile pour caractériser l'amorçage tandis que la profondeur maximale de fissure est le paramètre pertinent pour définir la transition entre propagation lente et propagation rapide. Des cartes de sensibilité à l'amorçage vrai ont été établies. Une profondeur critique de fissure de 10 à 20 µm a été déterminée pour les aciers 316L A et B pré-déformés par laminage. Elle est comprise entre 20 µm et 50 µm pour les matériaux pré-déformés par traction. Une ébauche de modèle d'ingénierie applicable aux aciers inoxydables austénitiques a été proposée : l'effet de la température est négligeable dans la gamme 290°C-360°C et l'impact de la contrainte sur le temps pour obtenir la transition varie comme (max/Rp0.2, T°C)11,5. L'effet du trajet de chargement ainsi que de l'écrouissage de surface dû à l'usinage sont intégrés indirectement à l'indice de contrainte, à ce stade du modèle. L'effet « matériau » observé dans cette étude tient principalement à l'effet du trajet de déformation. La puissance élevée de la dépendance à la contrainte traduit l'intégration de différents paramètres favorisant la localisation de la déformation. Pour cette raison, il sera nécessaire de définir le champ des contraintes locales pour parvenir à une modélisation plus physique. / Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under “trapezoidal” cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 µm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 µm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (max/YV)11,5. The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress high exponent has been identified which includes all micro-scale mechanisms leading to strain localisation at initiation sites.
15

Effect of Cyclic Strain Path And Vibration Cycles on Shear Modulus And Damping of Sand

Cherian, Achu Catherine January 2016 (has links) (PDF)
The soil strata is often subjected to various kinds of vibrations such as that caused by earthquakes, water waves, traffic loads, wind power plants, construction related equipments, pile driving and vibratory machines. The strains induced in a soil mass due to the vibrations generated by these different sources often lie in a range of 0.0001% - 0.1%. The estimation of the shear modulus (G) and damping (D) of soils in this strain range becomes an important aspect for performing the analysis and design of various geotechnical structures subjected to different kinds of vibrations. Strain amplitude, effective confining stress, void ratio/relative density, number of vibration cycles and cyclic strain history are some of the key parameters that influence the modulus and damping characteristics of sands. Although, the effects of strain amplitude, confining pressure and relative density have been studied quite extensively in literature, only limited studies seem to have been reported in literature to examine the effects of the cyclic strain history and the vibration cycles on these dynamic properties. The objective of this thesis is to study the effects of the cyclic strain history and the number of vibration cycles on the shear modulus and damping ratio of dry sands in a strain range of 0.0001% to 0.1%. A number of resonant column tests have been performed on dry sand specimens to examine the effect of the cyclic shear strain history, by including both increasing and decreasing strain paths, on the shear modulus and damping ratio for different combinations of relative densities (Dr) and confining pressures (σ3); an increasing strain path intends to simulate a situation when a vibratory machine is just started before reaching a steady state of vibration, and on the other hand, the decreasing strain path matches a condition when the machine is shut down after running continuously in a steady state for some time. The specimen has been subjected to a series of cycles of increasing and decreasing shear strain paths approximately in a shear strain range of 0.0006% - 0.1%. For chosen values of relative density and confining pressure, two different series of tests beginning with either (i) an increasing strain path or (ii) a decreasing strain path, were performed. In addition, the influence of the numbers of the vibration cycles which are used to measure the resonant frequency of the specimen, referred to as the cycle constant, on the values of shear modulus has also been analyzed. Irrespective of the strain path adopted to commence the test or the cycle constant used to perform a resonant column test, for a given strain amplitude, the shear modulus along the increasing strain path has been found to be always greater than the corresponding modulus value along the decreasing strain path. For the series of tests which were commenced with the increasing strain path, the shear modulus corresponding to the first increasing strain path becomes always the highest as compared to the subsequent strain paths. For a given strain cycle, irrespective of relative density of sand, the difference between the values of G associated with the increasing and decreasing strain paths becomes always the maximum corresponding to a certain shear strain level. The maximum reduction in the shear modulus, due to the cyclic variation of the shear strain, was noted to be approximately one fourth of the maximum shear modulus (G0). This reduction in the shear modulus, on account of the cyclic variation of the shear strain, increases generally with decrease in the values of both relative density and confining pressure. The damping ratio for a given shear strain for the increasing strain path was noted to be lower than the corresponding value for the decreasing strain path except for the first increasing strain path. For a particular strain level, the series of tests started with the decreasing strain path resulted in a lower value of shear modulus for all the cyclic strain paths as compared to the tests which were commenced with the increasing strain path. The modulus reduction curve for the first increasing strain path was noted to be more or less the same irrespective of the value of the chosen cycle constant. For the subsequent strain paths, an increment in the cycle constant value caused a reduction in the shear modulus at a particular shear strain level. In order to match a situation when the machine is running continuously in a steady state of vibration, resonant column tests were conducted in a torsional mode by inducing a large number of the vibration cycles with the shear strain amplitude in a range of 0.0005%-0.05%. Corresponding to a given input voltage of the drive mechanism, the specimens were subjected to a number of vibration cycles ranging from 1,000 to 50,000. The values of shear modulus and damping ratio, before and after the application of vibration cycles, were determined for several input voltages ranging from 0.001 V (minimum) to 0.3 V (maximum). The tests were carried out for different combinations of relative densities and confining pressures. For the chosen relative densities, hardly any influence of vibration cycles on the values of G and D were noted for the strain amplitude below the threshold strain level (0.0024% - 0.0044%). Beyond the threshold strain level, an induction of the vibration cycles leads to a continuous increment in the shear strain which eventually causes (i) a decrease in the shear modulus, and (ii) an increase in the damping ratio. This effect was found to become especially more significant for lower values of relative densities as well as confining pressures. The percentage changes in the values of (i) shear strain, (ii) shear modulus, and (iii) damping ratios after the introduction of vibration cycles were noted to increase with an increment in the number of vibration cycles. However, for a given increment of the vibration cycles, the changes in the values of shear modulus and damping ratio were generally noted to subside with an increase in the number of the vibration cycles. At various strain levels, the magnitude of the shear modulus was observed to increase continuously with an increase in the values of both relative density and confining pressure. For the shear strain greater than the threshold strain (0.0024% - 0.0044%), a reduction in the damping ratio values was also noted with an increase in the magnitudes of the confining pressure. On the other hand, the influence of relative density on the damping ratio was found to be relatively negligible. The shear modulus reduction curves from the present tests' data were found to compare reasonably well with the empirical curves proposed in the literature, especially for low values of the confining pressure. A deviation of the present modulus reduction curves from the empirical curves was observed generally at large shearing strains. However, the damping values obtained from the present study were noted to be lower than the values predicted by the existing empirical correlations, particularly for low values of the confining pressure. An attempt has also been made to improve the accuracy of the measurement of the arrival times of both primary (P) waves and shear (S) waves while conducting bender/extender element tests. For this purpose, a series of laboratory tests were performed on dry sand at different frequencies, varying between 1 kHz and 10 kHz, for medium dense and very dense sands with different values of the confining pressures. While determining the times of arrival of both P and S waves, two corrections have been proposed to incorporate (i) the presence of an initial offset in the input signal, and (ii) the time lag due to an existence of peripheral electronics between the input and received signals when the source and receiver elements are kept in direct contact with each other. The absolute magnitude of the resultant of these two corrections was found to reduce with an increase in the frequency of the input signal. The determination of the P-wave arrival time does not pose much difficulty. It has been noted that it becomes equally accurate to measure the arrival times of the S-wave provided the proposed corrections are incorporated. The maximum shear modulus values measured from the resonant column tests and the bender element tests by incorporating these two corrections were found to compare reasonably well with each other. The thesis brings out the effects of the cyclic strain history and the vibration cycles on the shear modulus and damping ratio of dry sand. The results obtained are expected to be useful while doing the analysis and design of geotechnical structures subjected to different kinds of vibrations.
16

Non-Linear strain paths in Sheet Metal Forming

Eriksson, Anton January 2021 (has links)
Today's automotive requirements have resulted in complex Sheet Metal Forming (SMF) processes of Sheet Metal (SM) with reduced formability, and thus it is crucial to be able to predict formability accurately to prevent material failure during SMF. Formability predictions today utilize Forming Limit Curves (FLC)s in Finite Element Analysis (FEA), but  FLCs are not valid for the Non-Linear Strain Paths (NLSP)s generated during SMF. One purpose of this thesis is thus to increase the knowledge on FP handling NLSP,  which was obtained through providing suggestions of failure models for handling NLSP effects, based upon literature on the subject. Generating NLSP experimentally is both time and material costly with the conventional method, thus the second purpose of this thesis was to increase the knowledge on test procedures for generating NLSP in SM. Based upon the findings of Chandramohan \cite{chandramohan_study_2021} five test procedures for generating NLSP were put forward, and the Nakajima test with modified punch geometry was chosen for further study.   In this thesis, the NLSP characteristics of two modified punch geometries were evaluated by FEA performed using LS-DYNA. For the FEA three specimens with blank width of 50, 100 and 200 mm was used, and the anisotropic Barlat yld2000  was used as the material model. This material model was calibrated to material data of Mild steel CR4, Aluminium alloy AA6016, and Dual-phase steel DP800. The results for all materials showcased similar reacquiring general NLSP characteristics at the corners of the punch features, which are unfavorable positions when failure by necking is evaluated, and thus it was concluded that the tested punch geometries are not favorable and more development of the punch geometry is needed. / Dagens fordonskrav, har lett till komplexa plåtformnings processer av plåtmaterial med reducerad formbarhet, och det är därför väsenligt att kunna förutsäga formbarhet noggrant för att förhindra materialbrott under plåtformning. Försträckning och brott förutses idag genom Formgränskurvor (FGK) i finita element analyser (FEA), men dessa gäller inte för icke-linjära töjningsvägar som uppkommer under plåtformning. Ett syfte av denna avhandling är därför att öka kunskapen kring modeller för att förutsäga formbarhet under icke-linjära töjningsbanors effekter, vilket uppnådes genom att  presenteras  förslag på brott modeller för att hantera de icke-linjära töjningsvägar baserade på  literatur inom området. Att generera icke-linjära töjningsvägar experimentellt är både tids och materialkrävande med den konventionella metoden, således är det andra syftet av denna avhandling att öka kunskapen kring test metoder för att generera icke-linjär töjningsbvägar i plåt. Baserat på Chandramohans \cite{chandramohan_study_2021} resultat diskuteras fem test procedurer för att generera icke-linjära töjningsvägar, och Nakajima test med modifierad stämpelgeometri valdes för vidare studie.  I denna avhandling studerades töjningsignaturen av två stämpelgeometrier med FEA i LS-DYNA. Till FEA:n användes tre ämnen med bredd av 50, 100 och 200mm, och anisotropiska Barlat yld2000 användes som materialmodell. Denna materialmodell kalibrerades mot experimentella mätvärden för mjukt stål CR4, Aluminiumlegering AA6016 och Stål DP800. Resultaten visade för alla material återkommande generella icke-linjära töjningsbanor enbart för hörnorna på stansgeometrierna, vilket är icke önskvärda positioner då brott pga. midjebildning utvärderas, och således drogs slutsatsen att nuvarande stansgeometri inte är gynnsam och ytterligare utveckling behövs.
17

Crystal structure, martensitic transformation crystallography, mechanical and magnetocaloric performance of Ni(Co)MnIn multifunctional alloys / Structure cristalline, cristallographie de transformation martensitique, performances mécaniques et magnétocaloriques de l'alliage multifonctionnel Ni(Co)MnIn

Yan, Haile 29 July 2016 (has links)
Les alliages à base de Ni-Mn-In ont attiré une attention considérable en raison de leurs propriétés multifonctionnelles depuis leur découverte en 2004, telles que l’effet de mémoire de forme métamagnétique (Metamagnetic shape memory effect MMSME), l'effet magnétocalorique (MCE) et l'effet de magnétorésistance (MR). Cependant, certaines connaissances fondamentales sur ces alliages manquent toujours jusqu'à présent, telles que la structure cristalline de la martensite, les caractéristiques cristallographiques de microstructure et de transition magnétostructurale. Dans cette thèse, les caractéristiques cristallographiques, les comportements mécaniques et les propriétés magnétiques des alliages Ni-Mn-In base ont été étudiés théoriquement et expérimentalement. Tout d'abord, les structures cristallines des alliages Ni-Mn-In ont été déterminées avec précision par la méthode de Rietveld dans le cadre de la théorie du superespace. Ensuite, la microstructure de la martensite, notamment l'organisation et l'interface des variantes, ainsi que les caractéristiques cristallographiques de la transformation martensitique, telles que les relations d'orientation (OR), le chemin de déformation de la transformation et la compatibilité géométrique entre l'austénite et la martensite, ont été systématiquement étudiés. Enfin, avec cette connaissance fondamentale sur les alliages Ni-Mn-In, les comportements et les mécanismes de sélection /réarrangement des variantes de martensite sous deux types de stratégies de chargement mécanique, à savoir le chargement à l'état martensitique et le chargement durant la transition structurelle, et les effets du recuit sur l'effet MCE et les pertes d'hystérésis associées ont été explorées. Les principaux résultats sont les suivants. La martensite modulé a une structure cristalline incommensurable avec la structure cristalline 6M et le groupe de superespace I2/m(α0γ)00 qui peut être approximée par un modèle de superstructure de multiplicité 3 dans l'espace à tridimensionnel. La microstructure de martensite est en forme de plaques et auto-organisée en colonies. Chaque colonie a quatre variantes d'orientations distinctes. Le maximum de 6 colonies distinctes et 24 variantes peut être généré à l'intérieur d'un grain austénitique. Bien que jusqu'à 14 types de relations de maclage sont proposées dans le cadre des théories cristallographiques de transformation martensitique, seuls trois types de relations de maclage sont généralement observés, à savoir des macles de type I, type II et composées. Les interfaces des variantes sont définies à l'échelle mésoscopique par leur plan de maclage K1 correspondant. Cependant, à l'échelle atomique, la macle de type I a une interface cohérente, alors que celles de type-II et les macles composées ont des interfaces étagées. Les deux relations d'orientations K-S et Pitsch sont appropriés pour décrire la correspondance de réseau entre austénite et martensite dans les alliages Ni-Mn-In. Cependant, le chemin de déformation lié à la relation de Pitsch est mis en évidence pour être efficace pour la déformation de la structure. Avec le chemin de transformation déterminé, le mécanisme sous-jacent de l'organisation des variantes est révélé. À travers la transformation martensitique, en dépit de l'existence d'une relativement large couche contrainte (de l'ordre de 20 nm), le plan d'habitat est bordé par une variante de martensite simple avec l'austénite plutôt que la structure généralement observée "en sandwich", ce qui suggère une relativement bonne compatibilité géométrique entre les phases correspondantes. Pour le chargement en compression à l'état martensitique, l'arrangement des variantes est réalisé par des processus de démaclage. Il est démontré que l'état de variante unique dans certaines colonies pourrait être obtenu lorsque l'orientation de chargement est située dans la zone de Facteur de Schmid (SF) positif commune pour les trois systèmes de démaclage. [...] / Ni-Mn-In based alloys have attracted considerable attention due to their multifunctional properties since its discovery in 2004, such as metamagnetic shape memory effect (MMSME), magnetocaloric effect (MCE) and magnetoresistance (MR) effect. However, some fundenmental knowledge on these alloys is still missing until now, such as crystal structure of martensite, crystallographic features of microstructure and magnetostructural transition. In this dissertation, the crystallographic features, mechanical behaviors and magnetic properties of Ni-Mn-In based alloys were studied theoretically and experimentally. First, the crystal structures of Ni-Mn-In alloys were accurately determined by Rietveld method in the frame of superspace theory (Chapter 3). Then, the microstructure of martensite (Chapter 4), such as variant organization and interface structure, and the crystallographic features of martensitic transformation, such as orientation relationship (OR), transformation strain path and geometrical compatibility between austenite and martensite, were systematically studied (Chapter 5). Finally, with this fundamental knowledge on Ni-Mn-In alloys, the behaviors and mechanisms of martensite variant rearrangement/ selection under two kinds of mechanical loading strategies, i.e. loading at martensite state and loading across the structural transition, and the effects of annealing on MCE and its related hysteresis loss were explored (Chapter 6). The main results are as follows. The modulated martensite has an incommensurate 6M crystal structure with superspace group I2/m(α0γ)00 that can be approximated by a three-fold superstructure model in the three-dimensional space. The microstructure of martensite is in plate shape and self-organized in colonies. Each colony has four distinct orientation variants. The maximum of 6 distinct colonies and 24 variants can be generated within one austenite grain. Although as many as 14 kinds of twin relations are suggested in the frame of crystallographic theories of martensitic transformation, only three types of twin relations are generally detected, i.e. type-I, type-II and compound twin. Variant interfaces are defined by their corresponding twinning plane K1 at mesoscopic scale. However, at atomic scale, the type-I twin has a coherent interface, whereas type-II and compound twins have “stepped” interfaces. Both the K-S and Pitsch ORs are appropriate to describe the lattice correspondence between austenite and martensite in Ni-Mn-In alloys. However, the strain path related to the Pitsch relation is evidenced to be the effective for the structural distortion. With the determined transformation path, the underlying mechanism of variant organization is revealed. Across the martensitic transformation, despite the existence of a relative wide stressed layer (around 20 nm), the habit plane is bordered by single martensite variant with austenite rather than the generally observed “sandwich-like” structure, implying a relative good geometrical compatibility between the corresponding phases. For compressive loading at martensite, variant arrangement is realized by the detwinning process. It is evidenced that a single variant state in some colonies can be obtained when the loading orientation is located in the common positive Schmid factor (SF) zone of the three detwinning systems. For loading across the structural transition, the prestrain is obtained by variant selection in which the number of colonies is significantly reduced and the variant organization within colony is greatly changed. The SF for transformation strain path is introduced to evaluate the possible selection of variants. Heat treatment can significantly enhance the magnetic entropy change ΔSM but simultaneously increase the magnetic hysteresis loss. For ΔSM, the chemical ordered degree should play a prominent role [...]

Page generated in 0.0537 seconds