• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the mechanical and strain recovery behaviour of partially crystalline PLA

Sweeney, John, Spencer, Paul, Nair, Karthik Jayan, Coates, Philip D. 13 August 2019 (has links)
Yes / This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress–strain, stress relaxation and strain recovery experiments at large strain at 60 C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress–strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery. / Funded by the Engineering and Physical Sciences Research Council, grant number EP/L020572/1
2

Modelling the Mechanical and Strain Recovery Behaviour of Partially Crystalline PLA

Sweeney, John, Spencer, Paul, Karthik, N., Coates, Philip D. 30 January 2020 (has links)
Yes / This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress-strain, stress relaxation and strain recovery experiments at large strain at 60 °C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress-strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery. / Engineering and Physical Sciences Research Council, grant number EP/L020572/1. / . Not submitted within 3 months from acceptance or publication but is a Gold paper.
3

Cross-Sectional Stiffness Properties of Complex Drone Wings

Muthirevula, Neeharika 05 January 2017 (has links)
The main purpose of this thesis is to develop a beam element in order to model the wing of a drone, made of composite materials. The proposed model consists of the framework for the structural design and analysis of long slender beam like structures, e.g., wings, wind turbine blades, and helicopter rotor blades, etc. The main feature consists of the addition of the coupling between axial and bending with torsional effects that may arise when using composite materials and the coupling stemming from the inhomogeneity in cross-sections of any arbitrary geometry. This type of modeling approach allows for an accurate yet computationally inexpensive representation of a general class of beam-like structures. The framework for beam analysis consists of main two parts, cross-sectional analysis of the beam sections and then using this section analysis to build up the finite element model. The cross-sectional analysis is performed in order to predict the structural properties for composite sections, which are used for the beam model. The thesis consists of the model to validate the convergence of the element size required for the cross-sectional analysis. This follows by the validation of the shell models of constant cross-section to assess the performance of the beam elements, including coupling terms. This framework also has the capability of calculating the strains and displacements at various points of the cross-section. Natural frequencies and mode shapes are compared for different cases of increasing complexity with those available in the papers. Then, the framework is used to analyze the wing of a drone and compare the results to a model developed in NASTRAN. / Master of Science / This thesis is based on developing framework for structural design and analysis of long slender beam-like structures, e.g., airplane wings, helicopter blades, wind turbine blades or any UAVs. The framework is used for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. The framework for beam analysis consists of main two parts, cross-sectional analysis of the beam sections and then using this section analysis to build up the finite element model. The cross-sectional analysis is performed in order to predict the structural properties for composite sections, which are used for the beam model. This type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of beam-like structures.
4

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa 14 May 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
5

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa January 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
6

Investigation of Mechanical Properties of Thermoplastics with Implementations of LS-DYNA Material Models.

Appelsved, Peter January 2012 (has links)
The increased use of thermoplastics in load carrying components, especially in the automotive industry, drives the needs for a better understanding of its complex mechanical properties. In this thesis work for a master degree in solid mechanics, the mechanical properties of a PA 6/66 resin with and without reinforcement of glass fibers experimentally been investigated. Topics of interest have been the dependency of fiber orientation, residual strains at unloading and compression relative tension properties. The experimental investigation was followed by simulations implementing existing and available constitutive models in the commercial finite element code LS-DYNA. The experimental findings showed that the orientation of the fibers significantly affects the mechanical properties. The ultimate tensile strength differed approximately 50% between along and cross flow direction and the cross-flow properties are closer to the ones of the unfilled resin, i.e. the matrix material. An elastic-plastic model with Hill’s yield criterion was used to capture the anisotropy in a simulation of the tensile test. Residual strains were measured during strain recovery from different load levels and the experimental findings were implemented in an elastic-plastic damage model to predict the permanent strains after unloading. Compression tests showed that a stiffer response is obtained for strains above 3% in comparison to tension. The increased stiffness in compression is although too small to significantly influence a simulation of a 3 point bend test using a material model dependent of the hydrostatic stress.
7

Anelastic Strain Recovery Method for In-situ Stress Measurements: A novel analysis procedure based on Bayesian statistical modeling and application to active fault drilling / 非弾性ひずみ回復測定法による原位置応力測定の高度化研究:べイズ統計モデリングに基づく新規解析手法の構築と活断層掘削への適用

Sugimoto, Tatsuhiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23176号 / 工博第4820号 / 新制||工||1753(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 林 為人, 教授 福山 英一, 准教授 村田 澄彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
8

Structure-Property Relationships in Some Novel Polyolefins

Dias, Peter Simon 17 June 2008 (has links)
No description available.

Page generated in 0.0874 seconds