Spelling suggestions: "subject:"stratégies optimale""
1 |
Modèles de Lévy exponentiels en finance : mesures de f-divergence minimale et modèles avec change-pointCawston, Suzanne 01 July 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude de modèles de Lévy exponentiels en finance, et en particulier : 1. aux propriétés de continuité de prix d'options en fonction des paramètres de processus de Lévy, 2. à la préservation de la propriété de Lévy lors du passage à une mesure martingale de f-divergence minimale, 3. à l'étude de modèles de type change-point, obtenus par recollement à un instant aléatoire de deux exponentielles de processus de Lévy. Pour l'étude de la continuité, on obtient d'abord des résultats de convergence pour les processus de Lévy sous les mesures martingales et on en déduit par la factorisation de Wiener-Hopf la convergence de nombreux prix d'options. On donne ensuite des résultats de continuité de prix sous différentes mesures martingales minimisant des f-divergences. Il a été remarqué que la préservation de la propriété de Lévy a lieu pour toute f-divergence dont la dérivée seconde est une fonction puissante. On montre que sous certaines conditions sur les paramètres des processus de Lévy, la préservation n'a lieu que pour des f-divergences classiques. La dualité entre maximisation d'utilité et minimisation de f-divergence nous permet alors d'obtenir une formule générale pour certaines stratégies optimales. Pour les modèles de type change-point, on décrit la forme des mesures martingales de f-divergence minimale en explicitant le lien avec les mesures minimales associés aux deux processus de Lévy sous-jacents. On donne également la forme de stratégies optimales liées à la maximisation d'utilité.
|
2 |
Evaluation des stratégies de gestion de l'énergie pour un moteur hybride pneumatique / Evaluation of the energy management strategies for a hybrid pneumatic engineIvančo, Andrej 16 December 2009 (has links)
Cette thèse porte sur l’évaluation de plusieurs stratégies de gestion d’énergie pour un nouveau concept de moteur hybride pneumatique. Ce concept combine un moteur à combustion interne avec un système de stockage d’énergie sous forme d’air comprimée. Une soupape supplémentaire relie alors la chambre de combustion à un réservoir d’air et permet un fonctionnement en mode moteur pneumatique ou pompe pneumatique (récupératif). La première stratégie, Causale, est basée sur des principes heuristiques. La deuxième, à Coefficient de Pénalité Constant, vise la minimisation d’un critère énergétique global. Un coefficient de pondération permet de mettre en opposition, pour un travail donné, les coûts énergétiques d’un mode pneumatique d’une part et d’un mode thermique d’autre part. Le mode offrant le coût le plus faible sera choisi. La troisième stratégie, à Coefficient de Pénalité Variable, sur le même principe utilise un coefficient de pondération variable selon la quantité d’énergie pneumatique disponible. Une stratégie, à reconnaissance de situation de conduite, permet d’adapter les stratégies à la situation reconnue (par exemple, embouteillage, autoroutier). Enfin, la dernière stratégie tente de recopier la solution optimale de référence (obtenue par programmation dynamique) à l’aide d’un modèle. Toutes les stratégies ont été validées en simulation sur cycles standards. De plus une méthode, basée sur les chaînes de Markov, de constructions de cycle de conduite « artificiels » mais réalistes est proposée. Les consommations obtenues avec les différentes stratégies proposées sont comparées en référence aux consommations minimales atteignables. Les résultats montrent que 40% de gain de consommation peuvent être atteints. / This thesis presents a study of several energy management strategies for a novel hybrid pneumatic engine concept. The concept combines an internal combustion engine with a system of compressed air for energy storage. An additional charge valve connects the combustion chamber to an air pressure tank, enabling the engine to function in pneumatic motor mode or as a pneumatic pump (recuperation mode). The first strategy is called Causal and implements a rule-based control technique. The second one, called Constant Penalty Coefficient, is derived from optimal control theory and is based on an equivalent consumption minimization strategy. A penalty coefficient is introduced to evaluate, for a given torque demand, the respective energy costs of the two modes, pneumatic and conventional, enabling the mode offering the lowest cost to be chosen. The third strategy, called Variable Penalty Coefficient, is based on the same principle but uses a variable penalty coefficient depending on the amount of pneumatic energy available in the compressed air tank. Another strategy investigated, called Driving Pattern Recognition, adapts the strategies to the driving situation recognized (for example, traffic jam, or highway). The last strategy studied attempts to reproduce the optimal reference solution obtained by dynamic programming, using a neural mode. All the strategies have been validated by simulation on standard driving cycles. In addition, a method based on the Markov chain process have been develop to make ‘artificial’ yet realistic driving cycles. The consumptions obtained with the various strategies are compared with the minimal consumptions achievable. Results demonstrate that 40% of fuel saving can be achieved on certain cycles. Several of the strategies proposed give results that are close to optimal.
|
3 |
Contrôle optimal stochastique des processus de Markov déterministes par morceaux et application à l’optimisation de maintenance / Stochastic optimal control for piecewise deterministic Markov processes and application to maintenance optimizationGeeraert, Alizée 06 June 2017 (has links)
On s’intéresse au problème de contrôle impulsionnel à horizon infini avec facteur d’oubli pour les processus de Markov déterministes par morceaux (PDMP). Dans un premier temps, on modélise l’évolution d’un système opto-électronique par des PDMP. Afin d’optimiser la maintenance du système, on met en place un problème de contrôle impulsionnel tenant compte à la fois du coût de maintenance et du coût lié à l’indisponibilité du matériel auprès du client.On applique ensuite une méthode d’approximation numérique de la fonction valeur associée au problème, faisant intervenir la quantification de PDMP. On discute alors de l’influence des paramètres sur le résultat obtenu. Dans un second temps, on prolonge l’étude théorique du problème de contrôle impulsionnel en construisant de manière explicite une famille de stratégies є-optimales. Cette construction se base sur l’itération d’un opérateur dit de simple-saut-ou-intervention associé au PDMP, dont l’idée repose sur le procédé utilisé par U.S. Gugerli pour la construction de temps d’arrêt є-optimaux. Néanmoins, déterminer la meilleure position après chaque intervention complique significativement la construction de telles stratégies et nécessite l’introduction d’un nouvel opérateur. L’originalité de la construction de stratégies є-optimales présentée ici est d’être explicite, au sens où elle ne nécessite pas la résolution préalable de problèmes complexes. / We are interested in a discounted impulse control problem with infinite horizon forpiecewise deterministic Markov processes (PDMPs). In the first part, we model the evolutionof an optronic system by PDMPs. To optimize the maintenance of this equipment, we study animpulse control problem where both maintenance costs and the unavailability cost for the clientare considered. We next apply a numerical method for the approximation of the value function associated with the impulse control problem, which relies on quantization of PDMPs. The influence of the parameters on the numerical results is discussed. In the second part, we extendthe theoretical study of the impulse control problem by explicitly building a family of є-optimalstrategies. This approach is based on the iteration of a single-jump-or-intervention operator associatedto the PDMP and relies on the theory for optimal stopping of a piecewise-deterministic Markov process by U.S. Gugerli. In the present situation, the main difficulty consists in approximating the best position after the interventions, which is done by introducing a new operator.The originality of the proposed approach is the construction of є-optimal strategies that areexplicit, since they do not require preliminary resolutions of complex problems.
|
Page generated in 0.0628 seconds