• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 9
  • 7
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 96
  • 26
  • 24
  • 22
  • 15
  • 15
  • 14
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Arctic Polar-night Jet Oscillation

Hitchcock, Adam Peter 21 August 2012 (has links)
The eastward winds that form each winter in the Arctic stratosphere are intermittently disrupted by planetary-scale waves propagating up from the surface in events known as stratospheric sudden warmings. It is shown here that following roughly half of these sudden warmings, the winds take as long as three months to recover, during which time the polar stratosphere evolves in a robust and predictable fashion. These extended recoveries, termed here Polar-night Jet Oscillation (PJO) events, are relevant to understanding the response of the extratropical troposphere to forcings such as solar variability and climate change. They also represent a possible source of improvement in our ability to predict weather regimes at seasonal timescales. Four projects are reported on here. In the first, the approximation of stratospheric radiative cooling by a linear relaxation is tested and found to hold well enough to diagnose effective damping rates. In the polar night, the rates found are weaker than those typically assumed by simplified modelling studies of the extratropical stratosphere and troposphere. In the second, PJO events are identified and characterized in observations, reanalyses, and a comprehensive chemistry-climate model. Their observed behaviour is reproduced well in the model. Their duration correlates with the depth in the stratosphere to which the disruption descends, and is associated with the strong suppression of further planetary wave propagation into the vortex. In the third, the response of the zonal mean winds and temperatures to the eddy-driven torques that occur during PJO events is studied. The collapse of planetary waves following the initial warming permits radiative processes to dominate. The weak radiative damping rates diagnosed in the first project are required to capture the redistribution of angular momentum responsible for the circulation anomalies. In the final project, these damping rates are imposed in a simplified model of the coupled stratosphere and troposphere. The weaker damping is found to change the warmings generated by the model to be more PJO-like in character. Planetary waves in this case collapse following the warmings, confirming the dual role of the suppression of wave driving and extended radiative timescales in determining the behaviour of PJO events.
72

Stationary Waves in the Stratosphere-troposphere Circulation

Wang, Lei 23 February 2011 (has links)
Stationary wave theory elucidates the dynamics of the time mean zonally asymmetric component of the atmospheric circulation and separates it from the dynamics of the zonal mean climatological flow. This thesis focuses on the dynamics of stationary wave nonlinearity and its applications in stationary wave modelling and the stationary wave response to climate change. Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the observed zonally asymmetric atmospheric general circulation. Stationary wave nonlinearity is examined in quasi-geostrophic barotropic dynamics in both the presence and absence of transient waves. Stationary wave nonlinearity is shown to account for most of the difference between the linear and full nonlinear stationary waves, particularly if the zonal-mean flow adjustment to the stationary waves is taken into account. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A time-integration type nonlinear stationary wave modelling technique is tested in this simple barotropic setting and is shown to be able to predict stationary wave nonlinearity and capture the basic features of the full nonlinear stationary wave. A baroclinic nonlinear stationary wave model is then developed using this technique and is applied to the problem of the stationary wave response to climate change. Previous stationary wave modelling has largely focused on the tropospheric circulation, but the stationary wave field extends into the stratosphere and plays an important dynamical role there. This stationary wave model is able to represent the stratospheric stationary wave field and is used to analyze the Northern Hemisphere stationary wave response to climate change simulated by the Canadian Middle Atmosphere Model (CMAM). In the CMAM simulation changes to the zonal mean basic state alone can explain much of the stationary wave response, which is largely controlled by changes of the zonal mean circulation in the Northern Hemisphere subtropical upper troposphere. However, details of the stratospheric wave driving response are also sensitive to other aspects of the zonal-mean response and to the heating response. Many climate change related effects appear to contribute robustly to an increased wave activity flux into the stratosphere.
73

The Arctic Polar-night Jet Oscillation

Hitchcock, Adam Peter 21 August 2012 (has links)
The eastward winds that form each winter in the Arctic stratosphere are intermittently disrupted by planetary-scale waves propagating up from the surface in events known as stratospheric sudden warmings. It is shown here that following roughly half of these sudden warmings, the winds take as long as three months to recover, during which time the polar stratosphere evolves in a robust and predictable fashion. These extended recoveries, termed here Polar-night Jet Oscillation (PJO) events, are relevant to understanding the response of the extratropical troposphere to forcings such as solar variability and climate change. They also represent a possible source of improvement in our ability to predict weather regimes at seasonal timescales. Four projects are reported on here. In the first, the approximation of stratospheric radiative cooling by a linear relaxation is tested and found to hold well enough to diagnose effective damping rates. In the polar night, the rates found are weaker than those typically assumed by simplified modelling studies of the extratropical stratosphere and troposphere. In the second, PJO events are identified and characterized in observations, reanalyses, and a comprehensive chemistry-climate model. Their observed behaviour is reproduced well in the model. Their duration correlates with the depth in the stratosphere to which the disruption descends, and is associated with the strong suppression of further planetary wave propagation into the vortex. In the third, the response of the zonal mean winds and temperatures to the eddy-driven torques that occur during PJO events is studied. The collapse of planetary waves following the initial warming permits radiative processes to dominate. The weak radiative damping rates diagnosed in the first project are required to capture the redistribution of angular momentum responsible for the circulation anomalies. In the final project, these damping rates are imposed in a simplified model of the coupled stratosphere and troposphere. The weaker damping is found to change the warmings generated by the model to be more PJO-like in character. Planetary waves in this case collapse following the warmings, confirming the dual role of the suppression of wave driving and extended radiative timescales in determining the behaviour of PJO events.
74

Stationary Waves in the Stratosphere-troposphere Circulation

Wang, Lei 23 February 2011 (has links)
Stationary wave theory elucidates the dynamics of the time mean zonally asymmetric component of the atmospheric circulation and separates it from the dynamics of the zonal mean climatological flow. This thesis focuses on the dynamics of stationary wave nonlinearity and its applications in stationary wave modelling and the stationary wave response to climate change. Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the observed zonally asymmetric atmospheric general circulation. Stationary wave nonlinearity is examined in quasi-geostrophic barotropic dynamics in both the presence and absence of transient waves. Stationary wave nonlinearity is shown to account for most of the difference between the linear and full nonlinear stationary waves, particularly if the zonal-mean flow adjustment to the stationary waves is taken into account. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A time-integration type nonlinear stationary wave modelling technique is tested in this simple barotropic setting and is shown to be able to predict stationary wave nonlinearity and capture the basic features of the full nonlinear stationary wave. A baroclinic nonlinear stationary wave model is then developed using this technique and is applied to the problem of the stationary wave response to climate change. Previous stationary wave modelling has largely focused on the tropospheric circulation, but the stationary wave field extends into the stratosphere and plays an important dynamical role there. This stationary wave model is able to represent the stratospheric stationary wave field and is used to analyze the Northern Hemisphere stationary wave response to climate change simulated by the Canadian Middle Atmosphere Model (CMAM). In the CMAM simulation changes to the zonal mean basic state alone can explain much of the stationary wave response, which is largely controlled by changes of the zonal mean circulation in the Northern Hemisphere subtropical upper troposphere. However, details of the stratospheric wave driving response are also sensitive to other aspects of the zonal-mean response and to the heating response. Many climate change related effects appear to contribute robustly to an increased wave activity flux into the stratosphere.
75

Theoretical Studies Of XOClO3 (X-ClO2, ClO3, Cl, F And H) And N2O5 : Implications For Stratospheric Ozone Depletion

Parthiban, S 11 1900 (has links) (PDF)
No description available.
76

Development of the UnoSat Platform for stratospheric balloon payloads

Scholz, Sebastian January 2023 (has links)
The UnoSat Platform is a software and 3D structure platform built with Arduino Uno boardsthat allows easier implementation of a satellite project in a 1-n unit CubeSat format. It isdesigned to improve and speed up development of balloon - nanosat projects of the M2 TSImaster. It provides a 3D-printable Lego based structure that can be extended by stackingmultiple pieces on top of each other. The structure parts allow to quickly increase thenumber of Arduinos and add shields on top of already integrated Arduinos. Because ofthis, the structure allows for easy prototyping, and printed pieces can be reused in futureprojects. The platform also provides a communication system that is very efficient andreduces the possibilities of programming mistakes when implementing communication. Itallows serializing and parsing data into and from a binary format, provides protection againsttransmission errors via cyclic redundancy checksum and allows dynamically sized messagepayloads. Additionally, it supports one way or both ways communication not only between agroundstation and an embedded device, but also between two embedded devices. The codeon the embedded device is generated specifically for a communication configuration, whichmakes it very efficient in terms of processing and memory usage on the embedded device.
77

Design and Evaluation of an Automated Pyro Cutter System for Stratospheric Balloons

Nummisalo, Leia January 2023 (has links)
This thesis describes the development of an autonomous recovery system for stratospheric balloons, focusing on the novel pressurised balloon prototype BALMAN of CNES. Stratospheric balloons, reaching altitudes of up to 40 km, are utilised for scientific experiments, with recovery of payloads being a critical aspect. While traditional recovery methods involve separating the balloon envelope and deploying a parachute, BALMAN's parachute will be deployed in free fall. The proposed autonomous system comprises decision-making and electronics components. The decision-making segment employs microcontrollers and environmental sensors to recognise the balloon's descent, triggering the release decision. The electronics section, responsible for providing energy to a pyro cutter, is designed with electrical switches and capacitors. Thermal simulations guide the placement of heaters, maintaining system temperature within operational limits. The final prototype, tested for functionality on-ground, exhibits a measured energy release of 24 mJ, double the requirement for pyro cutter activation. However, environmental and flight testing remain pending. The system's potential applications extend beyond BALMAN, offering a standardised autonomous recovery solution for various balloons. This innovation promises enhanced landing accuracy, obviates the need for telecommunication in recovery, and facilitates payload descent deceleration. Future endeavors involve comprehensive testing and potential integration into BALMAN missions, showcasing the system's adaptability and operational simplicity across diverse stratospheric endeavors.
78

D’EUSO-Balloon à EUSO-SPB : intégration, tests et résultats / From EUSO-Balloon to EUSO-SPB : integration, tests and results

Bacholle, Simon 18 October 2016 (has links)
JEM-EUSO est un projet de télescope spatiale dédié à la détection des rayons cosmiques d'ultra-haute énergie (RCUHE) (d'énergie supérieure à 10/48 eV) par l'observation de l'émission de lumière ultra-violette produite par l'interaction entre li rayon cosmique et l'atmosphère terrestre. Dans le cadre de ma thèse, j'ai travaillé sur le premier démonstrateur du projet, EUSO-Balloon, une version réduite de l'instrument prévu pour JEM-EUSO portée par un ballon stratosphérique. J'ai participé à l'étalonnage de la surface focale du ballon, composée de 36 photo-multiplicateurs multi-anodes (MAPMT), ainsi qu'à l'intégration de l'électronique de lecture et l'assemblage et les tests de l'instrument complet. J'ai pris part à la campagne de vol qui s'est déroulée à Timmins, au Canada, pour un vol la nuit du 24 août 2014. Pendant le vol, l'instrument a pu observer le flux lumineux en ultra-violet émis et réfléchi par le sol, ainsi que des impulsions laser tirées à partir d'un hélicoptère volant sous l'instrument pendant une partie de la mission et simulant le signal émis par un RCUHE interagissant avec l'atmosphère terrestre. Après le succès du premier vol d'EUSO-Balloon, un second vol est prévu au printemps 2017. Ce vol est prévu pour durer plusieurs semaines, et a pour objectif principal l'observation de RCUHE. Pour préparer ce vol, et à la suite des retours de la première mission, j'ai participé à plusieurs campagnes de tests afin d'améliorer certains aspects technologiques de l'instrument. J'ai également mené des simulations afin d'estimer le nombre d'UHECR que l'instrument détectera pendant un vol de plusieurs semaines / JEM-EUSO is a future space UV telescope dedicated to the observation of Ultra-High Energy Cosmic Rays( UHECR), through 'the detection of the UV light emitted by the interaction between the UHECR and the Earth atmosphere. The work done during my PhD was focused on EUSO-Balloon, a smaller scale balloon borne prototype of JEM-EUSO with a complete detection chain and Fresnel optics. During my PhD, I took part in the calibration of the focal surface, made up of 36 mufti-anode photomultipliers as well as the integration and full scale tests of the read-out electronics and the whole instrument. I took part of the flight campaign in Timmins, Canada with a flight on the 24`11 of August 2014. During the flight, the instrument was able to observe the UV light emitted and reflected by the ground as well as laser pulses shot from an helicopter flying under the balloon during the first part of the flight to simulate UHECR signal as seen from the instrument. After the success of the first flight of EUSO-Balloon, a second flight o a several weeks is planned for spring 2017, with the goal of observing real UHECR events from above. I took part of several test campaigns to improve the performances of the instrument for the second flight. Finally, I mn a serie of simulations to estimate the number of events the instrument should be able to detect during a several-week flight
79

The Auroral Large Imaging System : design, operation and scientific results

Brändström, Urban January 2003 (has links)
<p>The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena.</p><p>This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena.</p><p>ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult.</p><p>Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid.</p>
80

Untersuchungen zur dynamischen Kopplung der Troposphäre und der Stratosphäre / Analyses of the dynamical coupling of the troposphere and the stratosphere

Kleppek, Sabine January 2005 (has links)
Im Rahmen dieser Arbeit wurde ein besseres Verständnis der Kopplung der Troposphäre und der Stratosphäre in den mittleren und polaren Breiten der Nordhemisphäre (NH) auf Monatszeitskalen erzielt, die auf die Ausbreitung von quasi-stationären Wellen zurückzuführen ist. Der Schwerpunkt lag dabei auf den dynamisch aktiven Wintermonaten, welche die grösste Variabilität aufweisen. Die troposphärische Variabilität wird zum Grossteil durch bevorzugte Zirkulationsstrukturen, den Telekonnexionsmustern, bestimmt. Mittels einer rotierten EOF-Analyse der geopotenziellen Höhe in 500 hPa wurden die wichtigsten regionalen troposphärischen Telekonnexionsmuster der Nordhemisphäre berechnet. Diese lassen sich drei grossen geografischen Regionen zuordnen; dem nordatlantisch-europäischen Raum, Eurasien und dem pazifisch-nordamerikanischen Raum. <br><br> Da es sich um die stärksten troposphärischen Variabilitätsmuster handelt, wurden sie als grundlegende troposphärische Grössen herangezogen, um dynamische Zusammenhänge zwischen der troposphärischen und der stratosphärischen Zirkulation zu untersuchen. Dabei wurde anhand von instantanen und zeitverzögerten Korrelationsanalysen der troposphärischen Muster mit stratosphärischen Variablen erstmalig gezeigt, dass unterschiedliche regionale troposphärische Telekonnexionsmuster unterschiedliche Auswirkungen auf die stratosphärische Zirkulation haben. Es ergaben sich für die pazifisch-nordamerikanischen Muster signifikante instantane Korrelationen mit quasi-barotropen Musterstrukturen und für die nordatlantisch-europäischen Muster zonalsymmetrische Ringstrukturen ab 1978 mit signifikanten Korrelationswerten über tropischen und subtropischen Breiten und inversen Korrelationswerten über polaren Gebieten. <br><br> Bei einer Untersuchung des Einflusses der stratosphärischen Variabilität wurde gezeigt, dass sich die stärkste Kopplung von nordatlantisch-europäischen Telekonnexionsmustern mit der stratosphärischen Zirkulation bei einem in Richtung Europa verschobenen Polarwirbel ergibt, wodurch die signifikanten Korrelationen ab 1978 erklärt werden können. Eine zonal gemittelte und vor allem lokale Untersuchung der Wellenausbreitungsbedingungen während dieser stratosphärischen Situation zeigt, dass es zu schwächeren Windgeschwindigkeiten in der Stratosphäre im Bereich von Nordamerika und des westlichen Nordatlantiks kommt und sich dadurch die Wellenausbreitungsbedingungen in diesem geografischen Bereich für planetare Wellen verbessern. Durch die stärkere Wellenausbreitung kommt es zu einer stärkeren Wechselwirkung mit dem Polarjet, wobei dieser abgebremst wird. Diese Abbremsung führt zu einer Verstärkung der meridionalen Residualzirkulation. D. h., wenn es zu einer verstärkten Wellenanregung im Nordatlantik und über Europa kommt, ist die Reaktion der Residualzirkulation bei einem nach Europa verschobenem Polarwirbel besonders stark. <br><br> Die quasi-barotropen Korrelationsstrukturen, die sich bei den pazifisch-nordamerikanischen Mustern zeigen, weisen aufgrund von abnehmenden Störungsamplituden mit zunehmender Höhe, keiner Westwärtsneigung und einem negativen Brechungsindex im Pazifik auf verschwindende Wellen hin, die als Lösung der Wellengleichung bei negativem Brechungsindex auftreten. Dies wird durch den Polarjet, der im Bereich des Pazifiks stets sehr weit in Richtung Norden verlagert ist, verursacht. <br><br> Abschliessend wurde in dieser Arbeit untersucht, ob die gefundenen Zusammenhänge von nordatlantisch-europäischen Telekonnexionsmustern mit der stratosphärischen Zirkulation auch von einem Atmosphärenmodell wiedergegeben werden können. Dazu wurde ein transienter 40-Jahre-Klimalauf des ECHAM4.L39(DLR)/CHEM Modells mit möglichst realistischen Antrieben erstmalig auf die Kopplung der Troposphäre und der Stratosphäre analysiert. Dabei konnten sowohl die troposphärischen, als auch die stratosphärischen Variabilitätsmuster vom Modell simuliert werden. Allerdings zeigen sich in den stratosphärischen Mustern Phasenverschiebungen in den Wellenzahl-1-Strukturen und ihre Zeitreihen weisen keinen signifikanten Trend ab 1978 auf. Die Kopplung der nordatlantisch-europäischen Telekonnexionsmuster mit der stratosphärischen Zirkulation zeigt eine wesentlich schwächere Reaktion der meridionalen Residualzirkulation. Somit stellte sich heraus, dass insbesondere die stratosphärische Zirkulation im Modell starke Diskrepanzen zu den Beobachtungen zeigt, die wiederum Einfluss auf die Wellenausbreitungsbedingungen haben. Es wird damit deutlich, dass für eine richtige Wiedergabe der Wellenausbreitung und somit der Kopplung der Troposphäre und Stratosphäre die stratosphärische Zirkulation eine wichtige Rolle spielt. / Within the scope of this study a better understanding of the coupling of the troposphere and the stratosphere in the middle and polar latitudes (NH) on monthly timescales, caused by the propagation of quasi-stationary waves is improved. The approach was focused on the dynamical active winter months, including the largest variablity. <br><br> The tropospheric variability is strongly affected by preferred circulation patterns, the so called teleconnection patterns. The most important, regional, tropospheric teleconnection patterns in the Northern Hemisphere are determined by means of a rotated EOF-Analyses of the geopotential height at the 500 hPa level. They can be attributed to three geographical regions; North Atlantic/Europe, Eurasia and Pacific/North America. These strongest tropospheric variability patterns are taken as the basic tropospheric quantities to analyse the connections between the tropospheric and stratospheric circulation. By means of instantaneous and time-lagged correlation analyses, it has been shown for the first time that different regional, tropospheric teleconnection patterns have different effects on the stratospheric circulation. The Pacific/North American patterns reveal significant correlation values with quasi-barotropic structures and the North Atlantic/European patterns show significant correlations over tropical and subtropical latitudes and invers correlation values over the polar region. <br><br> The investigation of the stratospheric variability influence reveals that the strongest coupling of the North Atlantic/European teleconnection patterns with the stratospheric circulation appears during periods with a shift of the polar vortex towards Europe. The zonal averaged and particularly the local analyses of the wave propagation conditions show that weaker wind speed in the stratosphere over North America and the western part of the North Atlantic leads to improved wave propagation conditions in this geographical region. The stronger wave propagation produces a stronger interaction of the waves with the polar jet which results in enhanced wave breaking and an amplification of the residual circulation. In the case of a stronger wave forcing in the North Atlantic and over Europe these will be a stronger reaction of the residual circulation. The quasi-barotropic correlation structures, induced by the Pacific/North American patterns, are an indicator for evanescent waves because of the decreasing perturbations with increasing height, none westward declination and a negative refractive index in the Pacific. This is generated by the polar jet in the Pacific which is always shifted very far to the north. <br><br> Concluding, it was studied, whether Atmospheric General Circulation Models (AGCMs) can reproduce the detected connections of the North Atlantic/European teleconnection patterns with the stratospheric circulation. Therefore the transient model run of the interactively coupled chemistry-climate model ECHAM4.L39(DLR)/ CHEM is used for analysing the troposphere-stratosphere coupling, covering the period from 1960 to 1999. Both, the tropospheric and the stratospheric variability patterns have been simulated by the model. However the stratospheric patterns show a phase shift in the wave number 1 patterns and the time series of the wave number 1 structures do not offer a significant trend since 1978. The coupling of the North Atlantic/European teleconnection patterns with the stratospheric circulation shows a significantly weaker annular-like correlation structure. It turned out, that the stratospheric circulation particularly shows strong discrepancies to the observations which can influence the wave propagation conditions again. Therefore, the stratospheric circulation plays an important role for an accurate reproduction of the wave propagation and consequently for the coupling of the troposphere and the stratosphere.

Page generated in 0.1148 seconds