• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • Tagged with
  • 13
  • 13
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Voltage Stability and Reactive Power Provision in a Decentralizing Energy System: A Techno-economic Analysis

Hinz, Fabian 06 December 2017 (has links)
Electricity grids require the ancillary services frequency control, grid operation, re-establishment of supply and voltage stability for a proper operation. Historically, conventional power plants in the transmission grid were the main source providing these services. An increasing share of decentralized renewable energy in the electricity mix causes decreasing dispatch times for conventional power plants and may consequently lead to a partial replacement of these technologies. Decentralized energy sources are technically capable of providing ancillary services. This work focuses on the provision of reactive power for voltage stability from decentralized sources. The aim is to answer the question of how voltage stability and reactive power management can be achieved in a future electricity system with increasing shares of decentralized renewable energy sources in an economical and efficient way. A methodology that takes reactive power and voltage stability in an electricity system into account is developed. It allows for the evaluation of the economic benefits of different reactive power supply options. A non-linear and a linearized techno-economic grid model are formulated for this purpose. The analysis reveals an increasing importance of reactive power from the distribution grid in future development scenarios, in particular if delays in grid extension are taken into account. The bottom-up assessment indicates a savings potential of up to 40 mio. EUR per year if reactive power sources in the distribution grid provide reactive power in a controlled manner. Although these savings constitute only a small portion of the total cost of the electricity system, reactive power from decentralized energy sources contributes to the change towards a system based on renewable energy sources. A comparison of different reactive power remuneration mechanisms shows that a variety of approaches exist that could replace the inflexible mechanisms of obligatory provision and penalized consumption of reactive power that are mostly in place nowadays.
12

Grüne Ausbaustudie 2020 - Perspektiven für Erneuerbare Energien in Sachsen: Ermittlung der technischen Potenziale der erneuerbaren Energieträger in Sachsen sowie deren wirtschaftliche Umsetzungsmöglichkeiten für die Stromerzeugung bis zum Jahr 2020

18 July 2019 (has links)
Der Ausbau der Erneuerbaren Energien in Deutschland ist eine der Erfolgsgeschichten GRÜNER Politik. 2007 wurden 14 Prozent des Stromes von Erneuerbarer Energie bereitgestellt. Diese Studie von der 'Vereinigung zur Förderung der Nutzung Erneuerbarer Energien / VEE SACHSEN e.V.' unter Federführung von Herrn Dipl.-Ing. Hans- Jürgen Schlegel zeigt, dass Sachsen bereits im Jahre 2020 82 Prozent des gegenwärtigen Stromverbrauchs aus Erneuerbaren Energien wird bestreiten können. Windenergie, Photovoltaik, Biomasse und Biogas tragen jeweils zu einem Drittel dazu bei.:Autorenübersicht 2 Gliederung 3 Abkürzungsverzeichnis 5 1. Vorwort der Autoren 8 2. Klimawandel und Umbau der Energieversorgung 9 2.1 Klimawandel, Klimafolgen 9 2.2 Klimaschutzstrategien 12 2.2.1 Erneuerbarer Energien 12 2.2.2 Energieeffizienz 14 3. Nutzung Erneuerbarer Energien in Sachsen 15 3.1 Windenergienutzung 15 3.1.1 Ausgangssituation und kurzer historischer Abriss 15 3.1.2 Nutzungsstand 2007/2008 16 3.1.3 Technisch-realistisches Windenergiepotenzial 19 3.1.4 Potenzialbewertung aus aktueller Sicht 20 3.1.5 Umsetzungsmöglichkeiten für das technisch-realistische Potenzial 25 3.1.6 Mittelfristige Umsetzung bis 2012 31 3.1 7 Repowering von Windenergiealtanlagen 31 3.1.8 Längerfristige Umsetzung bis 2020 34 3.1.9 Ergebnisbewertung und Zusammenfassung 35 3.2 Solarenergienutzung 38 3.2.1 Historie - Sächsische Pioniere der Photovoltaik 38 3.2.2 Stromeinspeisegesetz und 1.000-Dächer-Programm 39 3.2.3 Kostendeckende Vergütung (KV) – Aachener Modell 40 3.2.4 100.000 - Dächer-Programm 40 3.2.5 Gesetz für den Vorrang Erneuerbarer Energien (EEG) 41 3.2.6. Vergleich in Europa – aktueller Stand 2008 41 3.2.7 Photovoltaik in Sachsen – aktueller Stand 2008 42 3.2.7.1 Die sächsische Photovoltaik als Teil des Solarvalley Mitteldeutschland 42 3.2.7.2 PV-Industrie 43 3.2.7.3 PV-Forschung 47 3.2.8 Voraussetzung für solare Nutzung 48 3.2.9 PV-Anlagen 50 3.2.10 PV-Anteil am Elektroenergieverbrauch 2008 57 3.2.11 PV-Entwicklung in Sachsen bis 2020 57 3.2.11.1 Einschätzung des technisch-realistischen Solarpotenzials 57 3.2.11.2 Methoden zur Ermittlung von relevanten PV-Dachflächen 63 3.2.11.3 Konkurrenz zwischen Photovoltaik und Solarthermie 64 3.2.12 Einschätzung der PV-Entwicklung bis 2020 65 3.3 Biomasseenergienutzung 70 3.3.1 Übersicht feste Biomasseenergie 70 3.3.2 Biomassepotenziale (feste Energieträger) 71 3.3.2.1 Theoretisches Potenzial 71 3.3.2.2 Technisches Potenzial feste Biomasse 71 3.3.2.3 Verwertung des tatsächlich genutzten Biomassepotenzials 76 3.3.3 Abschätzung der Potenzialentwicklung feste Biomasse bis 2020 85 3.3.4 Biogasnutzung 93 3.3.4.1 Übersicht Biogas 93 3.3.4.2 Potenzialabschätzung für 2007 95 3.3.4.3 Potenzialabschätzung für 2020 103 3.3.4.4 Potenzialvergleich 105 3.3.4.5 Ergebnisbewertung und Zusammenfassung 108 3.4 Wasserkraftnutzung 110 3.4.1 Kurzer historischer Abriss der Wasserkraftnutzung 110 3.4.2 Sächsische Flussgebiete und Niederschlag 111 3.4.3 Anteil des Wasserkraftstromes am Stromverbrauch 116 3.4.4 Wasserkraftanlagen und Abschätzung des Wasserkraftpotenzials 116 3.4.4.1 Potenzialabschätzung nach der Literatur 116 3.4.4.2 Datenmaterial und untersuchte Größen 116 3.4.4.3 Potenzial – alle Flussgebiete 118 3.4.4.4 Potenzial – Flussgebiet - Mulde / Weiße Elster 120 3.4.4.5 Potenzial – Flussgebiet - Elbegebiet 123 3.4.4.6 Potenzial – Flussgebiet - Neiße / Schwarze Elster 124 3.4.5 Interessenkonflikte und Argumentationen 126 3.4.6 Ergebnisbewertung und Zusammenfassung 131 3.5 Geothermienutzung 134 3.6 Kombination erneuerbarer Energieträger 136 3.7 Politische und bürokratische Hemmnisse 139 4. Zusammenfassung und Darstellung der Gesamtergebnisse 142 5. Literaturverzeichnis 144
13

Innovative energy technologies in energy-economy models

Schumacher, Katja 08 August 2007 (has links)
Die Einführung neuartiger Energietechnologien wird allgemein als der Schlüssel zur Senkung klimaschädlicher Treibhausgase angesehen. Allerdings ist die Abbildung derartiger Technologien in numerischen Modellen zur Simulation und ökonomischen Analyse von energie- und klimaschutzpolitischen Maßnahmen vielfach noch rudimentär. Die Dissertation entwickelt neue Ansätze zur Einbindung von technologischen Innovationen in energie-ökonomische allgemeine Gleichgewichtsmodelle, mit dem Ziel den Energiesektor realitätsnäher abzubilden. Die Dissertation adressiert einige der Hauptkritikpunkte an allgemeinen Gleichgewichtsmodellen zur Analyse von Energie- und Klimapolitik: Die fehlende sektorale und technologische Disaggregation, die beschränkte Darstellung von technologischem Fortschritt, und das Fehlen von einem weiten Spektrum an Treibhausgasminderungsoptionen. Die Dissertation widmet sich zwei Hauptfragen: (1) Wie können technologische Innovationen in allgemeine Gleichgewichtsmodelle eingebettet werden? (2) Welche zusätzlichen und politikrelevanten Informationen lassen sich durch diese methodischen Erweiterungen gewinnen? Die Verwendung eines sogenannten Hybrid-Ansatzes, in dem neuartige Technologien für Stromerzeugung und Eisen- und Stahlherstellung in ein dynamisch multi-sektorales CGE Modell eingebettet werden, zeigt, dass technologiespezifische Effekte von großer Bedeutung sind für die ökonomische Analyse von Klimaschutzmaßnahmen, insbesondere die Effekte hinsichtlich von Technologiewechsel und dadurch bedingten Änderungen der Input- und Emissionsstrukturen. Darüber hinaus zeigt die Dissertation, dass Lerneffekte auf verschiedenen Stufen der Produktionskette abgebildet werden müssen: Für regenerative Energien, zum Beispiel, nicht nur bei der Anwendung von Stromerzeugungsanlagen, sondern ebenso auf der vorgelagerten Produktionsstufe bei der Herstellung dieser Anlagen. Die differenzierte Abbildung von Lerneffekten in Exportsektoren, wie zum Beispiel Windanlagen, verändert die Wirtschaftlichkeit und die Wettbewerbsfähigkeit und hat wichtige Implikationen für die ökonomische Analyse von Klimapolitik. / Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international competitiveness and economic output.

Page generated in 0.0423 seconds