21 |
[en] DETECTION AND CHARACTERIZATION OF STRUCTURAL DAMAGE USING FIBER BRAGG GRATING SENSORS AND ARTIFICIAL NEURAL NETWORKS / [pt] DETECÇÃO E CARACTERIZAÇÃO DE DANOS ESTRUTURAIS ATRAVÉS DE SENSORES A REDE DE BRAGG E REDES NEURAIS ARTIFICIAISDANIEL RAMOS LOUZADA 26 February 2019 (has links)
[pt] O aumento dos custos relacionados aos processos de manutenção em estruturas como aeronaves, aliadas à crescente demanda das mesmas, alimentam a necessidade de investimentos em técnicas inovadoras de monitoramento estrutural. Dessa forma, o trabalho realizado nesta tese, busca o desenvolvimento de uma técnica de monitoramento ativo, visando o acompanhamento de parâmetros da estrutura analisada, a fim de identificar e caracterizar processos de dano não visíveis, tais como corrosão e delaminação. A metodologia empregada, teve como base a análise dos padrões de deformação superficial, obtidos com o uso de grades de sensores à fibra óptica baseadas em redes de Bragg (FBG). Inicialmente, tais padrões foram provocados por carregamentos estáticos (tração), e posteriormente por atuadores PTZ fixados à estrutura. Estes últimos são submetidos a uma voltagem alternada e frequência fixa. Esta técnica apresenta todas as vantagens dos sensores FBG (massa e dimensões reduzidas, imunidade eletromagnética, elevado poder de multiplexação e alta sensibilidade entre outras), alem de permitir a visualização de alterações nos padrões de deformação, provocados por danos, através da variação da
frequência de excitação. Com relação à interpretação dos resultados, a estratégia empregada consistiu em separar o problema de detecção e caracterização dos danos. Dessa forma, a detecção é realizada comparando a energia das deformações superficiais dos corpos de prova nos casos com e sem defeito, enquanto a caracterização é obtida através a utilização de redes neurais artificiais (RNA), por meio de rotinas de reconhecimento de padrões. / [en] The higher costs related to maintenance processes in structures such as aircraft, coupled with the growing demand of them, fueling the need for investment in innovative techniques for structural monitoring. Thus, the work done in this thesis seeks to develop a technique of active monitoring, aiming at monitoring of structure parameters analyzed in order to identify and characterize processes of hidden damage such as corrosion and delamination. The maid methodology was based on the analysis of patterns of surface deformation, obtained with the use of nets of optical fiber sensors based on fiber Bragg gratings ( FBG ). Initially, these patterns were caused by static loads (tension ), and later by PTZ actuators fixed to the frame, who are subjected to an AC voltage and fixed frequency. This technique has all the advantages of the FBG s sensors (mass and small dimensions, electromagnetic immunity, high multiplexing s power and high sensitivity among others), in addition to allowing visualization of changes in the patterns of deformation caused by damage, by varying the frequency excitation. With respect to the interpretation of the results, the strategy employed was to separate the problem of detection and characterization of damage. Thus, the detection is performed by comparing the deformation energy of the surface of the specimens in the cases with and without defect, whereas the characterization is obtained through the use of artificial neural networks (ANN) by means of pattern recognition routines.
|
22 |
Capteurs de corrosion à fibre optique pour la surveillance répartie d’ouvrages en béton armé / Distributed corrosion sensing in reinforced concrete structures by optical fiber sensingAli Alvarez, Shamyr Sadat 19 September 2016 (has links)
La corrosion des armatures de renforcement des structures en béton représente un enjeu socio-économique majeur. Sa détection et le suivi de son évolution constituent un défi pour la recherche appliquée. Les techniques standards non destructives de détection de corrosion mettent en œuvre des procédés indirects tels la mesure d’impédance, de potentiels, ou par ultrasons. Leurs capacités d’auscultation sont limitées dans l’espace (notamment en profondeur), leur coût reste élevé dans un contexte de maintenance périodique et elles conduisent à des paramètres d’interprétation complexe. Des progrès sont nécessaires dans la détection et l’analyse fiable de la progression des processus de corrosion. Dans ce travail, nous présentons une nouvelle méthode pour détecter la corrosion et le suivi de son évolution, basée sur l’observation directe des changements intervenant à l’interface fer-béton par Capteur à Fibre Optique (CFO). L'attaque par corrosion de la surface de l'armature dépend de plusieurs paramètres électrochimiques (température, pH, carbonatation, présence de chlorures, contamination biologique, etc.). Deux comportements mécaniques à l'interface fer-béton sont distingués. Dans le premier cas (carbonatation), le produit d'oxydation du métal reste à l'interface et augmente la pression interne, pouvant conduire à la fissuration de la couche de béton extérieure. Dans le second cas (piqures), les ions métalliques sont évacués hors de la structure avec comme conséquence une réduction de section des barres d'armature (affaiblissement du renforcement). Un CFO innovant est proposé dans le but de localiser et quantifier les deux types de corrosion précités. Le principe consiste à observer l’impact direct de la corrosion sur l’état de déformation d’une fibre optique préalablement précontrainte par construction. Deux procédés métrologiques sont étudiés : Bragg et réflectométrie fréquentielle (Optical Frequency-Domain Reflectometry - OFDR). Des tests de corrosion accélérée montrent la faisabilité du procédé. Une procédure de fabrication simplifiée et à coût optimisé est proposée pour la surveillance in situ et répartie des structures de génie civil, dans une perspective future de maintenance conditionnée. / Corrosion of reinforced bars (rebars) in concrete structures remains a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. Usual non-destructive corrosion detection methods involve impedance, potential or ultra-sonic indirect measurements of complex interpretation. Besides, they are restricted to near-surface examinations and the maintenance cost is still high (scheduled maintenance). Many efforts remain to be done to survey the onset and progression of corrosion processes in a reliable way. In this work, we present a new methodology to detect the onset of corrosion and to monitor its evolution, based on the direct observation of rebar–concrete interface changes by the use of an Optical Fiber Sensor (OFS). The corrosion attack over rebar surface depends on several physical, chemical and electrochemical parameters (temperature, pH, presence of chlorides/CO2, biological contamination, etc.). Two types of mechanical behavior and described. In the first case (carbonation), metal oxidation products stay at the interface and increase internal pressure, potentially leading to a crack of the external concrete layer. In the second case (pitting), metal ions are evacuated out of the structure, leading to a reduction of the rebar section (structural weakness). An innovative sensor design is proposed with the purpose of localizing and quantifying the amount of both corrosion types. The basic principle consists in measuring the impact of corrosion over the state of strain of a prestressed optical fiber. Two metrological techniques are used: Fiber Bragg Grating (FBG) and Optical Frequency-Domain Reflectometry (OFDR). Accelerated corrosion tests were performed in electrolytic solutions for both kinds of corrosion types (pitting and carbonation) and provide a proof-of-concept for the technique. A low-cost, simplified manufacturing procedure is proposed with the aim to provide distributed and in situ Structural Health Monitoring (SHM), suitable for future Condition-Based Maintenance (CBM) of civil engineering concrete structures.
|
23 |
Fabricação, análise computacional e experimental de juntas híbridas coladas monitoradas por compósitos inteligentes / Manufacturing, computational modeling and experimenting evaluation of hybrid bonded joints monitored through smart compositesEmanuel Nunes Borges 05 July 2012 (has links)
O presente trabalho correlacionou diversas funções de respostas em frequência (FRF) de juntas do tipo simples, coladas e fabricadas em titânio-compósito (resina epóxi reforçada por fibra de carbono). As FRFs produzidas foram investigadas (experimental e numericamente) tanto para juntas intactas como para juntas com falha, estas provenientes, por exemplo, do uso em serviço ou então, com resultado do processamento inadequado de um reparo. Com base nessas análises buscou-se, portanto, subsidiar o desenvolvimento de um sistema de monitoramento estrutural a partir da avaliação de seu comportamento dinâmico, medido pelo uso de pastilhas piezelétricas integradas à estrutura. Para que o respectivo objetivo fosse alcançado. Num primeiro momento, a fim de compreender os fenômenos envolvidos, conduziu-se a atividade de revisão bibliográfica, que baseada na consulta dos trabalhos mais recentes publicados sobre a análise de juntas coladas empregando abordagem numérica, analítica e/ou experimental. Em seguida, foram desenvolvidos modelos computacionais preliminares com solução via Método dos Elementos Finitos (MEF), a fim de se obter as diretrizes mínimas para uma proposta de fabricação das juntas híbridas (metal-compósito). Tal estratégia permitiu reduzir efeitos indesejados, que pudessem comprometer os resultados experimentais. Em posse dos resultados computacionais fabricou-se amostras de juntas metal-compósito com e sem dano. Num primeiro momento, foram realizadas análises numéricas através do desenvolvimento de modelos computacionais (com solução via MEF) das juntas, metal-compósito, monitoradas por transdutores piezelétricos. Em seguida, as juntas híbridas foram submetidas a ensaios experimentais dinâmicos, empregando técnicas de monitoramento com auxílio de transdutores piezelétricos e acelerômetros. Por fim, avaliaram-se potencialidades e limitações dos modelos computacionais desenvolvidos, através de estudos de caso, comparando os resultados experimentais com os resultados numéricos. / The herein proposed research has correlates Frequency Response Functions (FRF) of several hybrid titanium-composite (epoxy resin reinforced with carbon fiber) single lap bonded joints. The FRFs were investigated (numerically and experimentally) for joints with and without failures which may arise as the result of in service events or bad maintenance practices. The result of the dynamic analyses provided by the FRFs has substantiated the proposal of a damage detection method using piezoelectric elements capable which are capable to detect minor alterations on the dynamic behavior of the joint. In order to reach the proposed objective, the first action towards the given objective was study the problem through a bibliographic revision of the research subject, for this purpose the most recent published works related to numerical, analytical and experimental analyses of bonded joints were thoroughly evaluated and segregated. Afterwards, models of the joints were proposed using Finite Element Models (FEM) to obtain a preliminary result of the joints behavior to eventually substantiate the manufacturing processes, reducing the amount of material, time and cost of the experiments. Based upon the results of the FEM the coupons were manufactured with and without damages, using the methods and techniques available on the maintenance field for restoration of composite elements. Before proceed to the comparison between the modeled and experimental results, additional models were proposed using previous work\'s results to get results from the piezoelectric monitored joints. Afterwards, all experimental tests were conducted using accelerometers and piezoelectric elements to provide the means through it the advantages and drawbacks of the proposed monitoring method could be checked, by comparison between the experimental and modeled results.
|
24 |
Structural Health Monitoring Of Thin Plate Like Structures Using Active And Passive Wave Based MethodsGangadharan, R 05 1900 (has links) (PDF)
Aerospace structures comprising of metals and composites are exposed to extreme loading and environmental conditions which necessitates regular inspection and maintenance to verify and monitor overall structural integrity. The timely and accurate detection, characterization and monitoring of structural cracking, corrosion, delaminating, material degradation and other types of damage are of major concern in the operational environment. Along with these, stringent requirements of safety and operational reliability have lead to evolutionary methods for evaluation of structural integrity. As a result, conventional nondestructive evaluation methods have moved towards a new concept, Structural Health Monitoring (SHM). SHM provides in-situ information a bout the occurrence of damage if any, location and severity of damage and residual life of the structure and also helps in improving the safety, reliability and confidence levels of critical engineering structures. While the concepts underlying SHM are well understood, development of methods is still in a nascent stage which requires extensive research that is challenging and has been the main motivating factor for undertaking the work reported in the thesis. Under the scope of the investigations carried out in this thesis, an integrated approach using Ultrasonic (active) and Acoustic Emission (passive) methods has been explored for SHM of metallic and composite plate structures using a distributed array of surface bonded circular piezoelectric wafer active sensors(PWAS).
In ultrasonic method, PWAS is used for actuation and reception of Lamb waves in plate structures. The damage detection is based on the interaction of waves with defects resulting in reflection, mode conversion and scattering. In acoustic emission (AE) technique, the same sensor is used to pick up the stress waves generated by initiation or growth of defects or damage. Thus, both the active and passive damage detection methods are used in this work for detection, location and characterization of defects and damage in metallic and composite plates with complex geometries and structural discontinuities. And, thus the strategy adopted is to use time-frequency analysis and time reversal technique to extract the information from Lamb wave signals for damage detection and a geodesic based Lamb wave approach for location of the damage in the structure.
To start with experiments were conducted on aluminum plates to study the interaction of Lamb waves with cracks oriented at different angles and on a titanium turbine blade of complex geometry with a fine surface crack. Further, the interaction of Lamb wave modes with multiple layer delaminations in glass fiber epoxy composite laminates was studied. The data acquired from these experiments yielded complex sets of signals which were not easily discern able for obtaining the information required regarding the defects and damage. So, to obtain a basic understanding of the wave patterns, Spectral finite element method has been employed for simulation of wave propagation in composite beams with damages like delamination and material degradation. Following this, time-frequency analysis of a number of simulated and experimental signals due to elastic wave scattering from defects and damage were performed using wavelet transform (WT) and Hilbert-Huang transform(HHT).And, a comparison of their performances in the context of quantifying the damages has given detailed insight into the problem of identifying localized damages, dispersion of multi-frequency non-stationary signals after their interaction with different types of defects and damage, finally leading to quantification.
Conventional Lamb wave based damage detection methods look for the presence of defects and damage in a structure by comparing the signal obtained with the baseline signal acquired under healthy conditions. The environmental conditions like change in temperature can alter the Lamb wave signals and when compared with baseline signals may lead to false damage prediction. So, in order to make Lamb wave based damage detection baseline free, in the present work, the time reversal technique has been utilized. And, experiments were conducted on metallic and composite plates to study the time reversal behavior ofA0 andS0Lamb wave modes. Damage in the form of a notch was introduced in an aluminum plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. This experimental study showed that there is no change in the shape of the time reversed Lamb wave in the presence of defect implying no breakage of time reversibility. Time reversal experiments were further carried out on a carbon/epoxy composite T-pull specimen representing a typical structure. And, the specimen was subjected to a tensile loading in a Universal testing machine. PWAS sensor measurements were carried out at no load as also during different stages of delamination due to tensile loading. Application of time reversed A 0 and S0 modes for both healthy and delaminated specimens and studying the change in shape of the time reversed Lamb wave signals has resulted in successful detection of the presence of delamination. The aim of this study has been to show the effectiveness of Lamb wave time reversal technique for damage detection in health monitoring applications.
The next step in SHM is to identify the damage location after the confirmation of presence of damage in the structure. Wave based acoustic damage detection methods (UT and AE) employing triangulation technique are not suitable for locating damage in a structure which has complicated geometry and contains structural discontinuities. And, the problem further gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. In this work, a novel geodesic approach using Lamb waves is proposed to locate the AE source/damage in plate like structures. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed numerically on the meshed surface of the structure using Dijkstra’s algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first inter section point of these waves, one can get the AE source/damage location. Experiments have been conducted on metallic and composite plate specimens of simple and complex geometry to validate this approach. And, the results obtained using this approach has demonstrated the advantages for a practicable source location solution with arbitrary surfaces containing finite discontinuities. The drawback of Dijkstra’s algorithm is that the geodesics are allowed to travel along the edges of the triangular mesh and not inside them. To overcome this limitation, the simpler Dijkstra’s algorithm has been replaced by a Fast Marching Method (FMM) which allows geodesic path to travel inside the triangular domain. The results obtained using FMM showed that one can accurately compute the geodesic path taken by the elastic waves in composite plates from the AE source/damage to the sensor array, thus obtaining a more accurate damage location. Finally, a new triangulation technique based on geodesic concept is proposed to locate damage in metallic and composite plates. The performances of triangulaton technique are then compared with the geodesic approach in terms of damage location results and their suitability to health monitoring applications is studied.
|
25 |
Application of Lamb waves using piezoelectric technique for structure health monitoring / Tillämpning av Lambvågor med hjälp av piezoelektrisk teknik för strukturhälsoövervakningMauritz, Simon January 2023 (has links)
Structural health monitoring (SHM) is damage detection strategy for aerospace, civiland mechanical infrastructure. This project tries to show that Lamb waves, that are being generated and sensed with piezoelectric transducers, can be used for damage detection in a SHM system. For these piezoelectric transducers to work, filtering and amplification circuits needs to be connected to them. This report include the design,simulation, assembly and testing of these circuits. Due to lack of time, it was not possible to generate and sense actual Lamb waves. The result of the thesis is thatsimulations and tests show that it is possible to generate and sense Lamb waves for damage detection in a SHM system / Structural health monitoring (SHM) är en skadedetekteringsstrategi för flyg-,civil- och mekanisk infrastruktur. Detta projekt försöker visa att Lambvågor, som genereras och avkänns med piezoelektriska givare, kan användas för skadedetektering i ett SHM-system. För att dessa piezoelektriska givare ska fungera krävs att filtrerings- och förstärkningskretsar är anslutna till dem. Denna rapport inkluderar design, simulering, montering och testning av dessa kretsar. På grund av tidsbrist var det inte möjligt att generera eller avkänna Lambvågor. Resultatet av examensarbetet är att simuleringar och tester visar att det är möjligt att generera och avkänna Lambvågor för skadedetektering i ett SHM-system.
|
26 |
Wave Propagation in Healthy and Defective Composite Structures under Deterministic and Non-Deterministic FrameworkAjith, V January 2012 (has links) (PDF)
Composite structures provide opportunities for weight reduction, material tailoring and integrating control surfaces with embedded transducers, which are not possible in conventional metallic structures. As a result there is a substantial increase in the use of composite materials in aerospace and other major industries, which has necessitated the need for structural health monitoring(SHM) of aerospace structures. In the context of SHM of aircraft structures, there are many areas, which are still not explored and need deep investigation. Among these, one of the major areas is the development of efficient damage models for complex composite structures, like stiffened structures, box-type structures, which are the building blocks of an aircraft wing structure. Quantification of the defect due to porosity and especially the methods for identifying the porous regions in a composite structure is another such area, which demands extensive research. In aircraft structures, it is not advisable for the structures, to have high porosity content, since it can initiate common defects in composites such as, delamination, matrix cracks etc.. In fact, there is need for a high frequency analysis to detect defects in such complex structures and also to detect damages, where the change in the stiffness due to the damage is very small. Lamb wave propagation based method is one of the efficient high frequency wave based method for damage detection and are extensively used for detecting small damages, which is essentially needed in aircraft industry. However, in order, to develop an efficient Lamb wave based SHM system, we also need an efficient computational wave propagation model. Developing an efficient computational wave propagation model for complex structures is still a challenging area. One of the major difficulty is its computational expense, when the analysis is performed using conventional FEM. However, for 1D And 2D composite structures, frequency domain spectral finite element method (SFEM), which are very effective in sensing small stiffness changes due to a defect in a structure, is one of the efficient tool for developing computationally efficient and accurate wave based damage models. In this work, we extend the efficiency of SFEM in developing damage models, for detecting damages in built-up composite structures and porous composite structure. Finally, in reality, the nature of variability of the material properties in a composite structure, created a variety of structural problems, in which the uncertainties in different parameters play a major part. Uncertainties can be due to the lack of good knowledge of material properties or due to the change in the load and support condition with the change in environmental variables such as temperature, humidity and pressure. The modeling technique is also one of the major sources of uncertainty, in the analysis of composites. In fact, when the variations are large, we can find in the literatures available that the probabilistic models are advantageous than the deterministic ones. Further, without performing a proper uncertain wave propagation analysis, to characterize the effect of uncertainty in different parameters, it is difficult to maintain the reliability of the results predicted by SFEM based damage models. Hence, in this work, we also study the effect of uncertainty in different structural parameters on the performance of the damage models, based on the models developed in the present work.
First, two SFEM based models, one based on the method of assembling 2D spectral elements and the other based on the concept of coupling 2D and 1D spectral elements, are developed to perform high frequency wave propagation analysis of some of the commonly used built-up composite structures. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also to model the stiffened structures with different cross sections such as T-section, I-section and hat section.
Next, the wave propagation in a porous laminated composite beam is modeled using SFEM, based on the modified rule of mixture approach. Here, the material properties of the composite is obtained from the modified rule of mixture model, which are then used in SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the parameters such as wave number, group speed and also the effect of variation in theses parameters on the time responses are studied first. Next, the effect of the length of the porous region (in the propagation direction) and the frequency of loading, on the time responses, is studied. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam.
The SFEM models developed in this study is then used in the context of wave based damage detection, in the next study. First ,the actual measured response from a structure and the numerically obtained response from a SFEM model for porous laminated composite beam are used for the estimation of porosity, by solving a nonlinear optimization problem. The damage force indicator (DFI) technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. DFI is derived from the dynamic stiffness matrix of the healthy structure along with the nodal displacements of the damaged structure. Next, a wave propagation based method is developed for modeling damage in stiffened composite structures, using SFEM, to locate and quantify the damage due to a crack and skin-stiffener debonding. The method of wave scattering and DFI technique are used to quantify the damage in the stiffened structure.
In the uncertain wave propagation analysis, a study on the uncertainty in material parameters on the wave propagation responses in a healthy metallic beam structure is performed first. Both modulus of elasticity and density are considered uncertain and the analysis is performed using Monte-Carlo simulation (MCS) under the environment of SFEM. The randomness in the material properties are characterized by three different distributions namely normal, Weibul and extreme value distribution and their effect on wave propagation, in beam is investigated. Even a study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load.
A study is also conducted to analyze the wave propagation response In a composite structure in an uncertain environment using Neumann expansion blended with Monte-Carlo simulation (NE-MCS) under the environment of SFEM. Neumann expansion method accelerates the MCS, which is required for composites as there are many number of uncertain variables. The effect of the parameters like, fiber orientation, lay-up sequence, number of layers and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed.
Finally, a probabilistic sensitivity analysis is performed to estimate the sensitivity of uncertain material and fabrication parameters, on the SFEM based damage models for a porous laminated composite beam. MCS is coupled with SFEM, for the uncertain wave propagation analysis and the Kullback-Leibler relative entropy is used as the measure of sensitivity. The sensitivity of different input variables on the wave number, group speed and the values of DFI, are mainly considered in this study.
The thesis, written in nine chapters, presents a unified document on wave propagation in healthy and defective composite structure subjected to both deterministic and highly uncertain environment.
|
27 |
Ultrasonic Guided Wave Based Models, Devices and Methods for Integrated Structural Health MonitoringRathod, Vivek T January 2014 (has links) (PDF)
Structural Health Monitoring (SHM) systems for future structures and vehicles would involve a process of damage identification and prediction of certain quantities of interest that concerns the function and safety. This process provides SHM systems the ability to not only save cost but also enhance the service life, safety and reliability of the structures and vehicles. Integrated SHM system (ISHM) is an advancement of SHM system that has additional capability of predicting the component life/failure. ISHM system development involves detailed understanding of diagnostic waves, hardware components, signal processing paradigms and intelligent use of algorithms. Diagnostic waves like the guided waves are the elastic waves that propagate in a direction defined by the material boundaries. These waves have the capability of traveling large distance probing the entire thickness in plates/shells. Thus, they are widely used by SHM systems in monitoring the plate structures. Piezoelectric transducers are often employed in the interrogation using guided waves. Most SHM systems employing guided waves are designed for specific structures. Current paradigms of SHM systems are unable to enable the transition from simple or ideal structures to realistic and complicated structures. This is due to the challenges at the fundamental level involving transducer, wave propagation and phenomena of guided wave scattering with damages to evaluate the possible solutions through mathematical modeling and signal analysis capability required by ISHM systems.
This thesis aims to develop understanding of these problems at a fundamental level. Complex system level understanding is still needed which is left out as open problem.
A primary requirement in designing SHM system is the proper understanding of wave characteristics such as number of modes, wavelength and dispersiveness. Although three-dimensional elasticity solution and simplified theories are available to understand them, their applicability in SHM problem requires a much more detailed look. Effort toward this direction has led to the development of simpler models. However, mathematical models are not available for understanding the wave characteristics in complex structures involving stiffeners and adhesive joints. This problem is addressed in this thesis. There is a fair amount of understanding developed regarding transducer characteristics. This is accomplished by analytical and finite element models of transducers in the past. However, simplified transducer model that are computationally fast to suit SHM system requirements needs to be developed. The development of such model is presented in this thesis. Apart from modeling the transducers and wave scattering due to damage, signal correlation and calibration are needed for practical implementation in SHM. Characterization studies reported in published literature are limited to quasi-static and low frequencies applications. However, SHM of aerospace structures employ guided waves typically in the frequency range of 100-500 kHz. Methods to characterize the transducers at this frequency range needs to be developed, which is addressed in this thesis.
Another major requirement of SHM system is the design and development of sensor-actuator network and appropriate algorithm. Techniques developed earlier involving transducer arrays in this regard have limitation due to complexity of geometry and signal interpretation that needs to be addressed. The network with suitable algorithm should ideally monitor large area including the critical areas of failure with minimum number of transducers. ISHM systems further require some capability to estimate the useful life of the damaged structure in order to take suitable decisions. Efficient techniques to achieve these are not developed. Overall, there is a need to improve highly interdisciplinary areas involving mathematical modeling, transducer design, fabrication and characterization, damage detection and monitoring strategies. In this thesis, various novel techniques to combine mathematical model with experimental signals to enhance the damage detection capability are presented.
In this thesis, developments in the three main aspects of SHM systems are focused upon. They are (1) development of mathematical models of sensors/actuators, wave propagation and scattering due to damage (2) characterization and calibration of transducers and (3) development of technique to monitor wide variety of damages within the scope of ultrasonic guided wave based SHM. The thesis comprises of ten chapters. First chapter is devoted to the background and motivation for the problem addressed in this thesis. In second chapter, brief overview of available mathematical models and conventional damage monitoring strategy is presented. The significant contributions reported in the subsequent chapters in this thesis are outlined below
In chapter 3, a reduced-order model of guided wave propagation in thick structures with reduced-order approximation of higher-order elasto-dynamic field is formulated. The surface normal and shear tractions of the thick structure are satisfied in a closed form. The time-frequency Fourier spectral finite element is developed and is validated using detailed and computationally intensive finite element simulations. Natural frequencies obtained from the developed spectral finite element and the detailed finite element simulations are compared. Transient response due to broad frequency band and narrow frequency band excitations given in the form of surface tractions are validated by comparing with the detailed finite element simulations. Using the developed spectral finite element, wave scattering from a free edge and a notch are simulated and validated by comparing with the detailed finite element simulations.
In chapter 4, two-dimensional plane wave and flexural wave scattering models for more complicated features such as stiffener with delamination and stiffener with bolt failures in a stiffened panel are derived using ultrasonic ray tracing based approach combined with wave-field representation. Dispersion relations are reformulated for the base plate where it is bolted with the stiffener. Surface conditions due to contact stiffness and contact damping are modeled by introducing springs and dampers. Scattering coefficients for the bonded and bolted stiffeners are derived. The scattering coefficients are evaluated for various different frequencies. Results are compared for different stiffener parameters.
In chapter 5, a simplified analytical model of a piezoelectric actuator with uniform electrodes is modeled. The problem is to determine the launched guided wave characteristics in the structure. The analytical model is derived considering two-dimensional elasticity based approach and Airy’s stress function. The actuator model is used to specify the displacement boundary conditions in the detailed finite element model. The radiated wave patterns in a plate due to actuation from transducers of different shapes are obtained and validated with experiments. Phased array actuators are modeled in the detailed finite element model using the displacements estimated from the actuator model.
The radiated wave pattern from the detailed finite element simulations are validated with experiments.
Chapter 6 is devoted to the design and characterization of transducers for ultrasonic guided wave applications. The characterization techniques involve the estimation of voltage response for the induced strain by the guided wave at various different frequencies. First, a novel removable bonding technique and a calibration technique are demonstrated and related advantages are discussed. Performance of the piezoelectric thin film under quasi-static, dynamic and transient impact loadings are analyzed first. Next, a guided wave technique is developed to characterize piezoelectric thin film sensors and actuators at ultrasonic frequencies. The transducers with inter digital electrodes are characterized for frequency tuning and directional sensitivity. This characterization study enables in the selection of optimal frequency bands for interrogation. Further, the characterization of transducers with thermal degradation is presented.
In chapter 7, a novel guided wave technique to calibrate the thin film sensors for ultrasonic applications is presented. Calibration procedure involves the estimation of the piezoelectric coefficient at ultrasonic range of frequencies. Calibration is done by the measurement of voltage generated across thin films when guided waves are induced on them. With the proposed technique, piezoelectric coefficient can be estimated accurately at any frequency of the propagating wave. Similarly, the measurement of piezoelectric coefficient of thin films with inter digital electrodes is presented. The estimation of piezoelectric coefficient at various different directions using laser Doppler vibrometer is presented. Lastly, the degradation of piezoelectric coefficient is studied for increasing thermal fatigue.
In chapter 8, toward SHM methodology development, a guided wave based technique to detect and monitor cracks in a structure is presented. To establish the methodology, a detailed study is carried out on the effect of crack and specimen size on the guided wave propagation characteristics. Using the wave characteristics, an analytical way of modeling Lamb wave propagation in the specimen with plastic zone is proposed. The feasibility to determine plastic zone and fatigue crack propagation with integrated piezoelectric transducers is demonstrated experimentally and the results are verified analytically. A method is further established to detect damage at initial stage and crack-tip plastic zone size along with crack length for a given stress amplitude or vice-versa. An approach to estimate fatigue life from the transducer signals is also proposed.
In chapter 9, a compact circular array of sensor-actuator network and an algorithm is presented to monitor large plate structures. A method based on the wavelet transforms of transducer signals is established to localize and estimate the severity of damages. Experiments are conducted to demonstrate the capability of the circular array based method in the localization and quantification of various types of damages like debonding of stiffeners, failure of bolted joints, corrosion and hole-enlargement. A damage index is then computed from wavelet time-frequency map that indicates the severity of damage.
Chapter 10 ends with the concluding remarks on the work done with simultaneous discussion on the future scope.
The work reported in this thesis is interdisciplinary in nature and it aims to combine the modeling and simulation techniques with realistic data in SHM to impart higher confidence levels in the prediction of damages and its prognosis. The work also aims in incorporating various mathematical models of wave propagation and ray tracing based algorithm to optimize the detection scheme employed in SHM. The future direction based on this study could be aimed at developing intelligent SHM systems with high confidence levels so that statistical machine learning would be possible to deal with complex real-world SHM problems.
|
28 |
Mesure dynamique de déformation par rétrodiffusion Brillouin spontanée B-OTDR / Dynamic strain measurement based on spontaneous Brillouin scattering B-OTDRMaraval, Damien 11 May 2017 (has links)
Aujourd’hui, trois technologies distinctes et complémentaires sont disponibles pour réaliser des mesures réparties de température, de déformation ou de vibration grâce à l’analyses des rétrodiffusion Raman, Brillouin et Rayleigh. Les besoins industriels actuels se portent sur la mesure répartie de déformation pour des infrastructures avec de longs linéaires, comme les canalisations, pour lesquelles une cartographie linéaire et en temps réel de leur état est demandée. Nous nous focalisons alors sur la conception d’un système de mesure Brillouin capable de mesurer de manière répartie et dynamique les déformations subies par une fibre optique. La méthode employée sera celle du flanc de frange ; elle a déjà été développée et expérimentée sur une architecture opto-électronique de type analyseur Brillouin (Brillouin-OTDA), nécessitant l’accès aux deux extrémités de la fibre optique. Dans notre cas, elle est implémentée sur une architecture fonctionnant en réflectométrie. Les résultats expérimentaux obtenus seront caractérisés et validés par la simulation des mesures de la déformation et du déplacement d’une canalisation supportée entre deux appuis simples ; un modèle mécanique, adapté à cette configuration et transposable sur des projets réels, est développé. Par le biais de partenaire industriels de Cementys, ce modèle est utilisé dans deux projets de surveillance de canalisation d’hydrocarbures dont les moyens d’installation et la finalité sont différents. / Today, three distinct and complementary technologies are available for distributed temperature, strain or vibration measurements with the analysis of Raman, Brillouin and Rayleigh backscattered light. Current industrial needs are distributed strain measurements for linear infrastructures, such as pipelines, for which linear and real-time strain distribution is required. The research work aims to design a new distributed and dynamic strain measurement system based on the analysis of spontaneous Brillouin backscatter by reflectometry. Slope assisted technique is used to accelerate the measurement acquisition, currently limited to static events because of their actual principle of sweep frequency acquisition of the Brillouin backscattering spectrum. The experimental results are characterized and validated by the simulation of the measurements of the deformation and displacement of a pipe supported between two simple supports. A mechanical model, adapted to this configuration and transposable on real projects, is developed. Through Cementys industrial partner, this model is then used for two monitoring project of pipelines with different installation facilities and purpose.
|
29 |
Development of 3D Printing Multifunctional Materials for Structural Health MonitoringCole M Maynard (6622457) 11 August 2022 (has links)
<p>Multifunctional additive manufacturing has the immense potential of addressing present needs within structural health monitoring by enabling a new additive manufacturing paradigm that redefines what a sensor is, or what sensors should resemble. To achieve this, the properties of printed components must be precisely tailored to meet structure specific and application specific requirements. However due to the limited number of commercially available multifunctional filaments, this research investigates the in-house creation of adaptable piezoresistive multifunctional filaments and their potential within structural health monitoring applications based upon their characterized piezoresistive responses. To do so, a rigid polylactic acid based-filament and a flexible thermoplastic polyurethane based-filament were modified to impart piezoresistive properties using carbon nanofibers. The filaments were produced using different mixing techniques, nanoparticle concentrations, and optimally selected manufacturing parameters from a design of experiments approach. The resulting filaments exhibited consistent resistivity values which were found to be less variable under specific mixing techniques than commercially available multifunctional filaments. This improved consistency was found to be a key factor which held back currently available piezoresistive filaments from fulfilling needs within structural health monitoring. To demonstrate the ability to meet these needs, the piezoresistive responses of three dog-bone shaped sensor sizes were measured under monotonic and cyclic loading conditions for the optimally manufactured filaments. The characterized piezoresistive responses demonstrated high strain sensitivities under both tensile and compressive loads. These piezoresistive sensors demonstrated the greatest sensitivity in tension, where all three sensor sizes exhibited gauge factors over 30. Cyclic loading supported these results and further demonstrated the accuracy and reliability of the printed sensors within SHM applications.</p>
|
Page generated in 0.1316 seconds