61 |
REINFORCEMENT OF MELT-BLEND COMPOSITES; POLYMER-FILLER INTERACTIONS, PHASE BEHAVIOR, AND STRUCTURE-PROPERTY RELATIONSHIPSHenry, Milliman W. January 2011 (has links)
No description available.
|
62 |
REINFORCEMENT OF MELT-BLEND COMPOSITES; POLYMER-FILLER INTERACTIONS, PHASE BEHAVIOR, AND STRUCTURE-PROPERTY RELATIONSHIPSMilliman, Henry 31 January 2012 (has links)
No description available.
|
63 |
Structure-Property Relationship of Binder Jetted Fused Silica Preforms to Manufacture Ceramic-Metallic Interpenetrating Phase CompositesMyers, Kyle M. 24 May 2016 (has links)
No description available.
|
64 |
Effects of Microcrystallinity on Physical Aging and Environmental Stress Cracking of Poly (ethylene terephthalate) (PET)Zhou, Hongxia 05 October 2005 (has links)
No description available.
|
65 |
Structure-Property-Transfection Relationships in Polycation-mediated Non-viral DNA DeliveryLayman, John 12 December 2008 (has links)
Non-viral gene delivery agents, such as cationic polyelectrolytes, are attractive replacements to viruses due to the absence of potential immunogenic risk and the ability to tune their macromolecular structure. Although non-viral vectors possess numerous design advantages, several investigators have shown that transfer efficiencies are considerably lower when compared to viral vectors. The work reported in this dissertation aims to fundamentally understand the underlying structure-transfection relationships involved in polycation-mediated gene delivery. Efforts focused on the influence of molecular weight, macromolecular topology, carbohydrate modifications, and charge density on the overall transfection activity in vitro. Several families of polycations were synthesized in order to correlate chemo-physical characterization with transfection results. Results revealed that seemingly small changes in the structure of cationic polyelectrolytes can have profound consequences on their transfection activity. / Ph. D.
|
66 |
Synthesis and Characterization of Multiphase Block Copolymers: Influence of Functional Groups on Macromolecular ArchitectureSaito, Tomonori 16 May 2008 (has links)
Low molecular weight liquid polybutadienes (1000 – 2000 g/mol) consisting of 60 mol% 1,2-polybutadiene repeating units were synthesized via anionic telomerization and conventional anionic polymerization. Maintaining the initiation and reaction temperature less than 70 °C minimized chain transfer and enabled the telomerization to occur in a living fashion, which resulted in well-controlled molecular weights and narrow polydispersity indices. MALDI-TOF mass spectrometry confirmed that the liquid polybutadienes synthesized via anionic telomerization contained one benzyl end and one protonated end.
Subsequently, 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding was introduced to telechelic poly(ethylene-co-propylene), and mechanical characterization of the composites with UPy-functionalized carbon nanotubes was performed. The composites enhanced the mechanical properties and the UPy-UPy association between the matrix polymer and carbon nanotubes prevented the decrease of an elongation at break. The matrix polymer was also reinforced without sacrificing the processability. Additionally, UPy groups were introduced to styrene-butadiene rubbers (SBRs). Introducing UPy groups to SBRs drastically changed the physical properties of these materials. Specifically, the SCMHB networks served as mechanically effective crosslinks, which raised Tg and enhanced the mechanical performance of the SBRs.
Novel site-specific sulfonated graft copolymers, poly(methyl methacrylate)-g-(poly(sulfonic acid styrene)-b-poly(tert-butyl styrene)), poly(methyl methacrylate)-g-(poly(tert-butyl styrene)-b-poly(sulfonic acid styrene)), and the corresponding sodium sulfonate salts were successfully synthesized via living anionic polymerization, free radical graft copolymerization, and post-sulfonation strategies. The graft copolymers contained approximately 9 – 10 branches on average and 4 wt% of sulfonic acid or sodium sulfonate blocks adjacent to the backbone or at the branch terminus. The mobility of the sulfonated blocks located at the branch termini enabled the sulfonated blocks to more readily interact and form ionic aggregates. The glass transition temperatures (Tg) of the sulfonated graft copolymers with sulfonated blocks at the branch termini were higher than that of copolymers with sulfonated blocks adjacent to the backbone. More facile aggregation of sulfonated blocks at the branch termini resulted in the appearance of ionomer peaks in SAXS whereas ionomer peaks were not observed in sulfonated graft copolymers with sulfonated blocks adjacent to the backbone.
In addition, similar analogues, novel site-specific sulfonated graft copolymers, poly(methyl methacrylate)-g-(poly(sulfonic acid styrene)-b-poly(ethylene-co-propylene)) (PMMA-g-SPS-b-PEP), poly(methyl methacrylate)-g-(poly(ethylene-co-propylene)-b-poly(sulfonic acid styrene)) (PMMA-g-PEP-b-SPS), and the corresponding sodium sulfonate salts were successfully synthesized. Estimated ï £N values predicted the phase separation of each block and differential scanning calorimetry (DSC) and dynamic mechanical analysis confirmed the phase separation of each block component of the graft copolymers. The aggregation of sulfonic acid or sodium sulfonate groups at the branch termini restricted the glass transition of the PEP block. This lack of the glass transition of the PEP block resulted in higher storage modulus than a sulfonated graft copolymer with sulfonated blocks adjacent to the backbone. The location of sulfonated blocks in both sulfonic acid and sodium sulfonate graft copolymers significantly affected the thermal, mechanical and morphological properties.
Lastly, symmetric (16000 g/mol for each block) and asymmetric (14000 g/mol and 10000 g/mol for each block) poly(ethylene-co-propylene)-b-poly(dimehtylsiloxane) (PEP-b-PDMS) were synthesized using living anionic polymerization and subsequent hydrogenation. The onset of thermal degradation for the PEP-b-PDMS diblock copolymer was higher than 300 ºC and PEP-b-PDMS was more thermally stable than the precursor diblock copolymer, polyisoprene-b-PDMS. DSC analysis of PEP-b-PDMS provided Tg of PDMS -125 ºC, Tg of PEP -60 ºC, Tc of PDMS -90 ºC, and Tm of PDMS -46 and -38 ºC, respectively. Appearance of thermal transitions of each PEP and PDMS block revealed the formation of phase separation. Estimated Ï N also supported the phase separation. / Ph. D.
|
67 |
Relationship between molecular structure and surface properties of self-assembled monolayersLi, Huimin 24 September 2004 (has links)
Polyimides are frequently used as insulating layers in the microelectronics industry. These polymers are tough, have high thermal stability, and have favorable dielectric properties; consequently, polyimides are excellent materials for insulating layers in microelectronic devices. In this research, self-assembled monolayers are investigated for use as an adhesion promoter for metal substrates, and for corrosion protectors of the metal surface.
Gold substrates modified by adsorption of 3- and 4-aminothiophenol monolayers, 3- and (4-mercaptophenyl) phthalimide (MPP) monolayers, and by reaction of the 3- and 4-aminothiophenol monolayers with the phthalic anhydride were studied using reflection absorption infrared spectroscopy, contact angle measurement, ellipsometry, and electrochemical measurements. Reactions on the monolayers are used to model the attachment of an insulating polyimide to the substrate. The covalent attachment of the anhydride is confirmed, and the efficiency of the reaction of the aminothiolphenol monolayers is investigated. The reactivity of the aminothiolphenol monolayers is found to depend on the position of the amino-group around the phenyl ring.
Impedance spectroscopy is used to investigate the ionic insulating properties of these systems. The 4-mercaptophthalimide monolayer is found to have the highest monolayer resistance to ion transport. This result suggests that it forms the most densely packed monolayer. The monolayer resistance of the surfaces prepared by adsorption of the aminothiolphenol isomers followed by reaction with phthalic anhydride is much lower than the corresponding deposited mercaptophthalimide monolayers. These results suggest that the reaction efficiency is low. Impedance spectroscopy and polarization measurements suggests a higher protection efficiency for 3-mercaptophenylphthalimide. These results will be discussed in the context of the ability of the isomeric mercaptophthalimide monolayers to serve as protectors against substrate corrosion. / Ph. D.
|
68 |
Structure-Property Relationships and Adhesion in Polyimides of Varying Aliphatic ContentEichstadt, Amy Elizabeth 19 August 2002 (has links)
Aromatic polyimides have found widespread applicability which can be partially attributed to their thermal stability, chemical resistance, and high glass transition temperature. However, deficiencies in their processability, solubility, transparency, and relatively high dielectric constants do not always provide the optimum properties for many specialty microelectronics applications. The incorporation of aliphatic segments to form partially aliphatic polyimides, has been used to counteract these shortcomings. Many of the potential uses of partially aliphatic polyimides require them to adhere to ceramic substrates, a main topic of this research.
Polyimides and copolyimides that varied in chemical composition by their aliphatic content were characterized by their molecular weight, glass transition temperature, thermal stability, coefficient of thermal expansion, refractive index, dielectric behavior, and mechanical properties. Structure-property relationships were established. The gamma and beta sub-Tg viscoelastic relaxations were investigated to understand their molecular origins.
The adhesion performance of a selected series of partially aliphatic polyimides to SiO2/Si was examined using a shaft loaded blister test, which was designed and instrumented for use in a dynamic mechanical analysis instrument. The adhesion was studied at high and low percent relative humidities and for several temperatures to examine if adhesion strength is influenced by polymer chemical composition. The adhesion energy could not be quantified for the entire series of polyimides. It was possible to interpret the quantitative adhesive fracture energies along with the qualitative adhesion strength behaviors, the failure surface analyses, and to offer an understanding of the adhesive chemical structure-physical property relationships. These understandings provide a conclusion that the incorporation of aliphatic segments into the polyimide chemical structure improves the durability of the adhesive bond to SiO2/Si under high percent relative humidities. / Ph. D.
|
69 |
Structure–Property Relationships Of: 1) Novel Polyurethane and Polyurea Segmented Copolymers and 2) The Influence of Selected Solution Casting Variables on the Solid State Structure of Synthetic Polypeptide Films Based on Glutamate ChemistryKlinedinst, Derek Bryan 21 November 2011 (has links)
The foundational studies of this dissertation concern the characterization of segmented polyurethanes and polyureas synthesized without the use of chain extenders'molecules that are typically used to promote a microphase separated morphology that gives these materials their useful characteristics. Polyurethanes in which a single asymmetric diisocyanate comprising the whole of the hard segment were found to display poor microphase separation. Conversely, polyurethanes in which a single symmetric diisocyanate composed the hard segment were found to display good microphase separation. The more efficient packing of the symmetric hard segments also led to an increase in hard segment connectivity and hence higher values of storage moduli in these systems. When hydroxyl-terminated diisocyanates were replaced with amine-terminated diisocyanates, polyureas were formed. Here too, diisocyanate symmetry was found to play a key role with symmetric diisocyanates leading to better microphase separation. In addition, the polyurea materials displayed broader service temperature windows than their polyurethane counterparts as the relatively stronger bidentate hydrogen bonding replaced monodentate hydrogen bonding in these materials. A thread-like, microphase separated morphology was visually confirmed using atomic force microscopy. Other techniques such as ambient temperature tensile testing, and wide and small angle x-ray scattering were employed to confirm the presence of the microphase separated structure.
The investigation into the effects of diisocyanate chemistry and its symmetry was broadened to incorporate non-chain extended polyurethane materials with different soft segment molecular weights, as well as polyurethanes that did contain chain extenders. Once again the effect of using symmetric versus asymmetric diisocyanates was evident in the structure–property behavior of these systems, with symmetric diisocyanates forming materials that displayed better microphase separation and more connectivity of their hard domains.
Lastly, in a departure from the segmented copolymer area, a study was conducted into the influence of casting variables on the solid-state structure of synthetic polypeptide films based on glutamate chemistry. The effect of solvent evaporation was determined to play a key role in the morphology of these polypeptide films. Measured small angle light scattering patterns were compared to computer calculated patterns to reveal information about the structure, shape, and length scale of the polypeptide structure. / Ph. D.
|
70 |
Cresol Novolac/Epoxy Networks: Synthesis, Properties, and ProcessabilityLin-Gibson, Sheng 27 April 2001 (has links)
Void-free phenolic networks have been prepared by the reaction of phenolic novolac resins with various diepoxides. The stoichiometric ratio can be adjusted to achieve networks with good mechanical properties while maintaining excellent flame retardance. A series of linear, controlled molecular weight, 2,6-dimethylphenol endcapped cresol novolac resins have been synthesized and characterized. The molecular weight control was achieved by adjusting the stoichiometric ratio of cresol to 2,6-dimethylphenol and using an excess of formaldehyde. A dynamic equilibrium reaction was proposed to occur which allowed the targeted molecular weight to be obtained.
A 2000 g/mol ortho-cresol novolac resin was crosslinked by a diepoxide oligomer and by an epoxidized phenolic oligomer in defined weight ratios and the structure-property relationships were investigated. The networks comprised of 60 or 70 weight percent cresol novolac exhibited improved fracture toughness, high glass transition temperatures, low water uptake, and good flame retardance. The molecular weights between crosslinks were also determined for these networks. The stress relaxation moduli were measured as a function of temperature near the glass transition temperatures. Crosslink densities as well as the ability to hydrogen bond affect the glassy moduli of these networks. Rheological measurements indicated that cresol novolac/epoxy mixtures have an increased processing window compared to phenolic novolac/epoxy mixtures.
Maleimide functionalities were incorporated into cresol novolac oligomers, and these were crosslinked with bisphenol-A epoxy. The processability of oligomers containing thermally labile maleimides were limited to lower temperatures. However, sufficiently high molecular weight oligomers were necessary to obtain good network mechanical properties. Networks prepared from 1250 g/mol cresol novolac containing maleimide functionilities and epoxy exhibited good network properties and could be processed easily.
Latent triphenylphosphine catalysts which are inert at processing temperatures (~140°C) but possess significant catalytic activity at cure temperatures 180-220°C were necessary for efficient composite fabrication using phenolic novolac/epoxy matrix resins. Both sequestered catalyst particles and sizings were investigated for this purpose. Phenolic novolac/epoxy mixtures containing sequestered catalysts exhibited significantly longer processing time windows than those containing free catalysts. The resins also showed accelerated reaction rates in the presence of sequestered catalysts at cure temperatures. Trihexylamine salt of a poly(amic acid) was sized onto reinforcing carbon fibers and the composite properties indicated that fast phenolic novolac/epoxy cure could be achieved in its presence. / Ph. D.
|
Page generated in 0.0963 seconds