61 |
Une approche numérique pour la conception d'ouvrages de protection côtière au tombolo oriental de la presqu'île de Giens / A numerical Approach for the design of coastal protection works in the oriental Tombolo of the Giens PeninsulaVu, Minh Tuan 28 February 2018 (has links)
Le double tombolo de Giens, situé dans la ville de Hyères, dans le sud-est de la France, est une formation géomorphologique unique et rare dans le monde, qui relie l'île de Giens au continent. Il a été principalement formé en raison de la diffraction d'onde et de la réfraction par les îles. Il se compose de deux parties : la branche ouest (plage de l'Almanarre) directement en face du golfe de Giens et la branche orientale située sur la côte ouest de la baie d'Hyères. Ces parties sont séparées par l'étang salé des Pesquiers. La partie orientale du tombolo de Giens s'étend sur plus de dix kilomètres de l'embouchure de la rivière Gapeau au nord jusqu'à la plage de La Badine au sud. Les plages le long du tombolo oriental, en particulier les plages de Ceinturon et de Bona, sont sujettes à l'érosion et au rétrécissement en raison de causes naturelles et d'interférences humaines, mais les interventions anthropiques dominent.Afin d'atténuer ou d'empêcher l'érosion côtière, diverses structures côtières ont été utilisées le long du tombolo oriental de Giens. Elles ne peuvent résoudre l'érosion locale que dans certains cas, mais peuvent aussi engendrer des effets indésirables. Les structures côtières qui interfèrent avec le transport des sédiments le long des côtes, non seulement entraînent un déficit de sédiments et l'érosion dans la dérive en aval, mais aussi effacent le paysage environnant des plages.Les principaux objectifs de cette thèse étaient de mieux comprendre les processus physiques sous-jacents à la morpho-dynamique et d'anticiper l'évolution future du tombolo oriental de Giens en réponse aux différentes actions et interventions le long de la côte. La mesure structurelle la plus appropriée a été proposée non seulement pour protéger les plages de Ceinturon et Bona et pour stabiliser le rivage à long terme, mais aussi pour maintenir l'accessibilité ou l'esthétique des plages. Les modèles numériques MIKE 21 et LITPACK de DHI sont utilisés pour atteindre ces objectifs. L'évolution historique et future à long terme du rivage est également évaluée et prédite en utilisant la combinaison de techniques de télédétection, de système d'information géographique (SIG) et de régression linéaire. Ces modèles numériques ont été testés de manière satisfaisante sur des données historiques disponibles, car ils pouvaient reproduire l'hydrodynamique observée et l'évolution côtière.En particulier, une nouvelle approche suggérée pour simuler la présence de posidonies et divers types de fonds marins est présentée dans ce travail. Les résultats numériques interprètent le rôle ainsi que l'impact du changement de vent, la variation saisonnière, les événements extrêmes, les herbiers de posidonies, l'élévation du niveau de la mer et le ré-ensablement de la plage sur l'évolution morphologique du tombolo oriental de Giens. De plus, les résultats obtenus démontrent que les digues sous-marines jouent un rôle très important dans la protection des plages de Ceinturon et Bona, elles permettent de réduire efficacement la hauteur des vagues, la vitesse du courant et le transport des sédiments ainsi que contrecarrer le retrait du rivage dans toutes les conditions des vagues, à l'exception des tempêtes semi-centenaires et centennales pour lesquelles une certaine érosion persiste. Combinées à des ré-ensablements périodiques mais limités en espace et en temps, elles semblent constituer le meilleur compromis de protection à moyen et long terme. / The double tombolo of Giens, located in the town of Hyères, South East of France, is a unique and rare geomorphological formation in the world, which links Giens Island to the continent. It was mainly formed due to the wave diffraction and refraction by the islands. It consists of two parts: the western branch (Almanarre beach) directly facing the Gulf of Giens and the eastern branch lying on the western coast of Hyères bay. These parts are distinctly separated by the salt pond of Pesquiers. The eastern part of Giens tombolo extends over more than ten kilometers from the mouth of Gapeau river in the north to La Badine beach in the south. The beaches along the eastern tombolo, especially Ceinturon and Bona beaches are subject to beach erosion and beach narrowing due to both natural causes and human interference, but anthropogenic interventions are still dominant. In order to mitigate or prevent coastal erosion, various coastal structures have been used along the eastern Giens tombolo. They can only solve local erosion in some cases, but may also trigger some undesirable effects as well as disadvantages. Even the shore-normal structures that interfere with longshore sediment transport, not only result in the deficit of sediment and erosion in the downstream drift, but also blot out surrounding landscape of the beaches.The main objectives of this study was to better understand the physical processes underlying the morphodynamics, and also anticipate future evolution of the eastern Giens tombolo in response to different actions and interventions taking place along the coast. Thereof, the submerged breakwater (SBW) was proposed to not only protect the Ceinturon and Bona beaches and stabilize the shoreline in the long term, but also maintain beach amenity or aesthetics. DHI’s MIKE 21 and LITPACK numerical models are used in order to achieve these above-mentioned objectives. Additionally, the historical and future medium-term shoreline evolution along the eastern Giens tombolo is also evaluated and predicted by using the combination of remote sensing, geographic information system (GIS) techniques coupled with the Digital Shoreline Analysis System (DSAS) along with linear regression method. These numerical models were satisfactorily tested available historical data, as they could reproduce the observed hydrodynamics and coastal evolution. Especially, a novel approach suggested to simulate the presence of Posidonia seagrass and various types of seabed is presented in this work. The numerical results interpret the role as well as impact of wind change, seasonal variation, extreme events, Posidonia seagrass, sea level rise, and beach nourishment on the morphological evolution of the eastern Giens tombolo. Moreover, the results obtained strongly demonstrate that the SBWs play a very important in protecting Ceinturon and Bona beaches to a certain degree, viz. effectively reducing the nearshore wave heights, current speed and sediment transport as well as counteracting the retreat of the shoreline under the wave conditions apart from the semi-centennial and centennial storms.
|
62 |
Submerged attached-growth reactors as lagoon retrofits for cold-weather ammonia removalMattson, Rebecca Ruth 01 May 2018 (has links)
Small towns that operate wastewater treatment lagoons struggle to meet ammonia limits in cold weather. Here we report the performance of a lagoon, retrofitted with submerged attached-growth reactors (SAGRsTM), to provide insight on ammonia effluent compliance and optimal SAGR sizing as functions of water temperature. The lagoon-SAGR water resource recovery facility (WRRF) removed 95% of incoming ammonia with 94% attributable to the SAGRs. The high treatment capacity of the two primary SAGRs, evidenced by nearly continuous dissolved oxygen saturation and exceedingly high ammonia removals, suggested the two secondary SAGRs were essentially unnecessary and that all four SAGRs should be reduced in size. Furthermore, without the secondary SAGRs, the primary SAGR effluent would have exceeded the permitted ammonia discharge limit only four times in the 2.5 year study. At its current size, the lagoon-SAGR WRRF never exceeded permitted ammonia limits, but size reductions should be used for future retrofits.
To further understand cold-weather ammonia removal in the lagoon-SAGR WRRF, we investigated the effect of increased ammonia loading on biomass and the effect of biofilms on microbial abundance. When ammonia loading to the SAGRs was increased in the fall, the lagoon-SAGR WRRF never exceeded its ammonia permit limit, the kinetic coefficients were maintained (0.5-0.8 d-1) and the NH3 removal rates improved (0.25 kg d-1 in baseline loading to 0.45 kg d-1) despite a large temperature decrease (25 °C to < 16 °C). In the biofilm, ammonia-oxidizing archaea abundance was 10 times greater than the ammonia-oxidizing bacteria abundance suggesting the potential importance of ammonia oxidizing archaea in biofilm mediated systems. Additionally, the ammonia and nitrite transforming microbes in the SAGRs had a diverse range of dissolved oxygen affinities and were more abundant in the biofilm in comparison to the wastewater. Anaerobic ammonium-oxidizing bacteria were abundant in the biofilm even though the film constantly interacted with high dissolved oxygen. We found that two components of a successful lagoon-SAGR WRRF were increased biomass in the SAGRs before cold-weather due to elevated ammonia loading and diverse oxygen affinities in the microbes related to ammonia removal.
|
63 |
Analysis of Cutthroat Flume Discharge RatingsRen, Liyan 01 May 1993 (has links)
Sixteeen sets of original laboratory data collected by many investigators for various Cutthroat flume sizes are thoroughly reviewed and organized. Best-fit discharge parameters are obtained by performing the free-flow analysis and the submerged-flow analysis. Then, the transition submergence can be calculated. Afterwards, the unified free-flow and submerged-flow discharge parameter s are developed for each flume size in order to generalize the calibrations for Cutthroat flumes. This is a very tedious process requiring a trial-and-error approach. Finally, comparisons are made of the measured laboratory discharges with the predicted discharges for both free flow and submerged flow using both the best-fit and the unified discharge parameters.
The results proved quite good as measured by the standard deviation for each flume size. In most cases, the average standard deviation using the unified discharge parameters was only slightly greater than when using the best-fit discharge parameters. However, there is a significant difference in the accuracy of free-flow measurements compared with submerged-flow measurements. Using the unified discharge parameters, the mean standard deviation for all of the flumes was 2.1 percent for free flow and 6.5 percent for submerged flow.
|
64 |
A Multi-Scale Approach to Study Predator-Prey Interactions and Habitat Use of Pinfish, Lagodon rhomboidsChacin, Dinorah Helena 09 July 2014 (has links)
Biological processes like species interactions and patterns such as abundance and distribution observed in nature can vary depending on the scale at which the subject of interest is evaluated. Knowing that there is no single natural scale at which systems should be studied, in this thesis, I conducted a series of basic and applied ecological approaches in order to examine the phenomena that can occur at different scales of space, time, and ecological organization.
Species abundances can vary over large spatial and temporal scales. By studying the habitat use of an abundant species, which uses a wide range of habitats, insights can be gained into how seascape-scales might influence population-level patterns. Similarly, temporal scales might affect the dynamics of species that have complex life cycles where migration is involved. Therefore, in the first study I used an eight-year dataset to conduct a population-level study at broader time- and seascape- scales of an abundant species in Tampa Bay, Florida. The goal of this study was to provide the first in-depth study on the habitat use of Pinfish on the eastern Gulf of Mexico and to provide insights on how seascape-scales can influence their abundance and distribution.
Predator-prey interactions can be influenced by habitat at different spatial scales. In seagrass systems, blade density can provide prey refugia at local scales, which are further embedded within the seascape-scale effect of turbidity. In the second study, I used a combination of in situ field experiments and laboratory-controlled experiments to examine and separate the effects of habitat across these local and seascape scales on the relative predation rates of tethered Pinfish (Lagodon rhomboids).
The broad-scale analyses indicated that population-level differences, such as abundance patterns and distribution can be influenced by temporal and spatial scales. Field- studies showed that habitat can influence ecological interactions at local- and seascape- scales. Overall, this research demonstrates the importance of using multiple spatial and temporal scale approaches when studying ecology, especially of those organisms that move over large distances and have complex life histories.
|
65 |
The potential for Charophyte re-establishment in large, shallow, eutrophic lakes with special reference to Lake Waikare, New Zealand.Hopkins, Aareka January 2006 (has links)
Lake Waikare is a large, shallow eutrophic lake devoid of submerged macrophytes. I investigated potential methods for re-establishing submerged macrophytes in the lake. Specifically, I subjected charophyte (Chara corallina) plantlets to two treatments of exposure in the lake (in areas exposed and sheltered from wind) to test for survival and growth under these conditions, and inside and outside fish exclosures to test for growth and survival in the presence of fish. While plantlets grew outside the exclosures in winter, their accumulated biomass over 21 days was less than protected plantlets. In winter, the accumulated biomass was lower outside than inside exclosures (by ~40%) at the sheltered site and was lower outside than inside exclosures (by 43%) at the exposed site. Overall, growth rates in winter were higher at the sheltered site (compared to the exposed site) by ~7%. In summer, charophyte accumulated biomass inside the exclosures increased by 85%, while at the sheltered site accumulated biomass increased by 58%. Outside the exclosures in summer the plantlets were completely removed at both sites. Overall, growth rates where higher at the exposed site than the sheltered site by 31%. Fish were responsible for the partial removal of plantlets in winter and total removal of plantlets in summer, and therefore affect the survival and growth of charophytes in Lake Waikare. The embayment at the sheltered site provides the best location in winter for re-establishment of charophytes from oospores because better growth rates were obtained there, and its sheltered location provides protection from severe wave action found at the exposed site. Oospores did not germinate after being submersed in the lake for 90 days due to heavy sedimentation. To induce an improvement in the present light climate, Alum was tested to determine its effectiveness and longevity for settling lake sediments to allow charophytes to establish and grow. Examining the settling rates of Lake Waikare sediments and water treated with Alum over a range of suspended sediment concentrations and time intervals, sediments settled faster with Alum than without for at least 15 days (at 200 g l^1 suspended sediment concentration) and it remained active to 60 days but at reduced effectiveness. At the other concentrations tested (100 g l^1 and 300 g l^1 suspended sediment concentration), Alum responses were insignificant. An improved light climate achieved by fish removal or Alum treatment will likely not be sufficient to permit the re-establishment of submerged macrophytes due to the turbid, algal-dominated state of the lake. The present nutrient and sediment levels, wave climate and fish influence must be mitigated so charophyte plantlets can be established.
|
66 |
Prediction Of Noise Transmission In A Submerged Structure By Statistical Energy AnalysisYayladere Cavcar, Bahar 01 September 2012 (has links) (PDF)
The aim of this study is to develop a sound transmission model that can be used to predict the vibration and noise levels of a submerged vessel. The noise transmitted from the mechanical vibrations of the hull of a submarine and the turbulent boundary layer excitation on the submarine are investigated. A simplified physical model of the submarine hull including the effects of bulkheads, end enclosures, ring stiffeners and fluid loading due to the interaction of the surrounding medium is presented in the study. An energy approach, i.e., Statistical Energy Analysis (SEA) is used for the analysis because the characterization of the hull of the structure can be done by a very large number of modes over the frequency range of interest and the deterministic analysis methods such as finite element and boundary element methods are limited to low frequency problems. The application consists of the determination of SEA subsystems and the parameters and the utilization of power balance equations to estimate the energy ratio levels of each subsystem to the directly excited subsystem. Through the implementation of SEA method, the sound pressure levels of the hull of the structure are obtained. In terms of military purposes, the sound levels of the submarine compartments are vital in the aspects of the preserving of submarine stealth.
|
67 |
The effect of welding speed on the properties of ASME SA516 grade 70 steelHall, Alicia M. 19 January 2010
Submerged arc welding (SAW) is often the method of choice in pressure vessel fabrication. This process features high production rates, welding energy and/or welding speed and requires minimal operator skill. The selection of appropriate parameters in SAW is essential, not only to optimize the welding process in order to maintain the highest level of productivity, but also to obtain the most desirable mechanical properties of the weld.<p>
The focus of this study was to investigate the effect of welding speed on the properties of SA516 Grade 70. Plates of SA516 Gr. 70 steel 17 mm x 915 mm x 122 mm were submerged arc welded with a welding current of 700 A and welding speeds of 15.3, 12.3 and 9.3 mm/s. Following the welding; strength, microstructure, hardness and impact toughness of the specimens were examined. Charpy impact testing was performed according to ASTM E 23 on specimens notched in the weld metal (WM) and in the heat-affected zone (HAZ), to measure the impact toughness. Fractography was performed on broken specimens using optical and scanning electron microscopy in order to correlate the mechanisms of fracture with the impact toughness values.<p>
The highest hardness values were in the coarse-grained HAZ followed by the WM with the lowest hardness in the parent metal (PM). The HAZ had higher impact toughness than the WM and PM for all welding speeds. The slowest welding speed (9.3 mm/s) obtained complete penetration and therefore produced the most visually sound weld. The fastest welding speed (15.3 mm/s) had the narrowest HAZ and showed good ductile-to-brittle transition behaviour for both the WM and HAZ specimens, but produced incomplete penetration defects. Welding speed had little affect on the notch toughness of the HAZ with only a 9 J rise in upper shelf energy and an 8 °C drop in the impact transition temperature (ITT) with increased welding speed from 9.3 to 15.3 mm/s. However, for the WM, there was a 63 J drop in the upper shelf energy but also a 41 °C improvement of the ITT between the 9.3 and 15.3 mm/s welding speeds.
|
68 |
The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steelsYang, Yongxu 21 October 2008
Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized.
In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy.
It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.
|
69 |
潜堤上の構造物に作用する波力とその算定法に関する研究水谷, 法美, MIZUTANI, Norimi, 許, 東秀, HUR, Dong-Soo 08 1900 (has links)
No description available.
|
70 |
The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steelsYang, Yongxu 21 October 2008 (has links)
Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized.
In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy.
It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.
|
Page generated in 0.0479 seconds