• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 150
  • 32
  • 20
  • 16
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 459
  • 432
  • 33
  • 30
  • 28
  • 26
  • 25
  • 23
  • 23
  • 23
  • 22
  • 22
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Produção de biossurfactantes por fermentação submersa usando substrato não convencional / Biosurfactants production by batch fermentation using alternative substrate

Rocha, Maria Valderez Ponte 09 February 2007 (has links)
ROCHA, M. V. P. Produção de biossurfactantes por fermentação submersa usando substrato não convencional. 124 f. 2007. Dissertação (Mestrado em Engenharia Química) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-03-28T19:34:27Z No. of bitstreams: 1 2007_dis_mvprocha.pdf: 1790875 bytes, checksum: b070b3232d563c7859c50466363d10da (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-03-28T19:46:15Z (GMT) No. of bitstreams: 1 2007_dis_mvprocha.pdf: 1790875 bytes, checksum: b070b3232d563c7859c50466363d10da (MD5) / Made available in DSpace on 2016-03-28T19:46:15Z (GMT). No. of bitstreams: 1 2007_dis_mvprocha.pdf: 1790875 bytes, checksum: b070b3232d563c7859c50466363d10da (MD5) Previous issue date: 2007-02-09 / The aim of this work was to investigate the use of natural and clarified cashew apple juice as an alternative raw material for biosurfactant production by Pseudomonas aeruginosa and Bacillus subtilis. In the assays with P. aeruginosa ATCC 10145 on rotary shaker, the influence of medium (CAJN) supplementation with soybean oil, as source carbon, and with different sources of nitrogen: peptone, NaNO3 and (NH4)2SO4, were investigated. Results were compared with the obtained when Nutritive Broth (NB) and CAJN were used as culture medium. Maximum reduction in the Surface Tension (41%)was obtained when P. aeruginosa was grown on CAJP, after 24 h of cultive. In these assays, the surface tension was reduced from 50 to 29.5 dina.cm-1. When P. aeruginosa was grown on CAJN supplemented with NaNO3 or (NH4)2SO4, the reduction in the Surface Tension was of 37.14 and 15.85 %, respectively, after 72 h of cultive. Evaluated CAJP supplemented with glycerol and soybean oil. In these assays, high growth was observed, an optical density of 5,0 at 600 nm with 48h of culture was observed, however small reduction in surface tension (16,51 %) was achieved using glycerol as carbon source. Based on the results in flasks, the mediums CAJP and CAJNaNO3 were selected for further studies in a biorreator. The assays were conduced in biorreator at 30°C, 200 rpm and without aeration. Nevertheless, the expected profile of rhamnolipids production was not observed. Such fact may have happened due to the lack of oxygen in the cultivation medium, since the process was conducted without aeration. The stability of biosurfactant produced by P. aeruginosa in CAJP against NaCl, pH and temperature and its chemical structure were evaluated. The biosurfactante produced by P. aeruginosa was stable to temperature and variations, as well as against different NaCl concentrations. Furthermore, it emulsified all the studied hydrocarbons and soybean oil. No protein was detected in the extracted biosurfactant; it however contained carbohydrate. The highest biosurfactant production occurred with 48h,when CAJP was used as culture medium (3.86 g of biosurfactant for 1000 mL de medium) and the poorest in NB. In parallel, different assays were performed to optimize the culture media for surfactin production by Bacillus subtilis using CAJN and clarified cashew apple juice (CAJC). Best results were obtained when mineral medium supplemented with yeast extract (5 g.L-1) was used and formulated with CAJC (glucose concentration - 10 g.L-1). In these assays, a reduction of 21.37 % in the surface tension was obtained and production of surfactin was observed by HPLC. However, best results of surface tension were higher than 39 dina.cm-1. Therefore, twelve strains of Bacillus sp. were evaluated regarding the ability of producing surfactin when grown on CAJC. After 48 hours of cultivation, with strain BE 08, the surface tension of the fermented broth, free of cells, reached 28.0 ± 1.0 dina.cm-1,and it also presented emulsifying activity. The results obtained in this work indicate that the cashew apple juice is an appropriate raw material for biosurfactants production. / Este trabalho teve como objetivo avaliar a produção de biossurfactante por cepas de Pseudomona aeruginosa e Bacillus subtilis, utilizando suco de caju, integral e clarificado, como matéria-prima não convencional. Nos ensaios com P. aeruginosa ATCC 10145 em mesa agitadora, avaliou-se a suplementação do suco de caju integral (CAJN) com óleo de soja, como fonte de carbono, e com diferentes fontes de nitrogênio: peptona, NaNO3 e (NH4)2SO4, sendo estes resultados comparados com os obtidos utilizando caldo nutritivo e com meio CAJN. A maior redução na tensão superficial (41 %) foi obtida no suco de caju suplementado com peptona (CAJP) após 24 h de cultivo. Neste ensaio, observou-se uma redução da tensão superficial do meio de 50 para 29,5 dina cm-1. Já em meio suplementado com NaNO3 e (NH4)2SO4, obteve-se, respectivamente, uma redução na TS de 37,14 e 15,85% após 72 horas de cultivo. Estudou-se a suplementação do meio CAJP com glicerol e óleo de soja. Nestes ensaios, observou-se um alto crescimento celular, obtendo uma densidade óptica (a 600nm) de 5,0 com 48 h de cultivo, contudo uma pequena redução da tensão superficial (16,51 %) ao utilizar glicerol. Com base nos resultados conduzidos em mesa agitadora, os meios CAJP e CAJNaNO3 foram selecionados para estudos em fermentador de bancada. Realizaram-se ensaios utilizando biorreator a 30°C, 200 rpm e sem aeração, porém não se observou o mesmo perfil de produção de ramnolipídeos ocorrido em mesa agitadora. Tal fato pode ter ocorrido devido à falta de oxigênio no meio de cultivo. Acompanhou-se a estabilidade térmica, efeito da variação de pH e da concentração de NaCl, na atividade emulsificante do biossurfactante produzido em CAJP e sua composição química. O biossurfactante produzido por P. aeruginosa demonstrou-se estável a variações de temperatura, pH e concentrações de NaCl, e emulsionou todos os hidrocarbonetos estudados e óleo de soja. Em paralelo, diferentes ensaios foram realizados visando otimizar o meio de cultivo para a produção de surfactina por B. subtilis usando CAJN e suco de caju clarificado (CAJC). Os melhores resultados foram obtidos quando se utilizou meio mineral suplementado com extrato de levedura e formulado com CAJC, de maneira que a concentração de glicose fosse de 10 g.L-1. Nestes ensaios, obteve-se uma redução de 21,37 % na tensão superficial e observou-se a presença de surfactina através das análises conduzidos em HPLC. No entanto, a mínima tensão superficial alcançada foi superior a 39 dina.cm-1. Portanto, avaliaram-se outras cepas de B. subtilis, doze ao total, quanto à capacidade de produzir surfactina utilizando CAJC. Após 48 horas de cultivo com as cepas BE 08, a tensão superficial do meio de cultivo livre de células atingiu 28,0 ± 1,0 dina.cm-1, que também apresentou atividade emulsificante. Os resultados obtidos neste trabalho indicam que o suco de caju é uma matéria-prima adequada para a produção de biossurfactantes.
202

Extração e caracterização de ácido γ-poliglutâmico em substrato de soja fermentado (natto) /

Fernandes, Ana Rosa Aon Cardoso. January 2017 (has links)
Orientador: Valquíria Campos / Banca: Isaac Jamil Sayeg / Banca: Natan de Jesus Pimentel Filho / Resumo: O ácido γ-poliglutâmico (γ-PGA) é uma homopoliamida composta por unidades de D- e L- de ácido glutâmico. Trata-se de biopolímero aniônico que possui propriedades como solubilidade em água, atoxicidade, além de ser comestível e biodegradável. Devido a estas propriedades, possui muitas aplicações ambientais, dentre elas, o uso como incremento ao processo de floculação, no tratamento de água. O ácido γ-poliglutâmico pode ser produzido, através da fermentação da soja utilizando-se da bactéria Bacillus subtilis encontrada em alimentos como o natto, consumido como iguaria no Japão. Grande parte das aplicações de biopolímeros está diretamente envolvida com seu potencial de resposta às alterações do meio em que se encontram dissolvidos. Uma abordagem voltada ao entendimento das alterações estruturais, conformações e associações de cadeias poliméricas apresenta alto interesse científico, assim como aplicações práticas. O objetivo deste trabalho volta-se pela extração e quantificação do ácido γ-poliglutâmico de produtos comerciais, natto e PGα21Ca, para estudos como agente floculante. Observou-se diferença expressiva, na produção de ácido γ-poliglutâmico, em marcas distintas de natto. A metodologia de extração γ-PGA que representou maior eficiência foi através do uso de metanol refrigerado como agente de precipitação, onde em apenas uma extração obteve-se o biopolímero com atividade floculante, quando comparado à extração com o álcool etílico e acetona. Quanto ao método de extração de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The γ-polyglutamic acid (γ-PGA) is a homopolyamide composed of D- and L- units of glutamic acid. It is anionic biopolymer that has properties such as water solubility, no toxicity, in addition to being edible and biodegradable. Due to these properties, it has many environmental applications, among them, the use as an increment to the flocculation process, in the treatment of water. γ-polyglutamic acid can be produced by fermenting soybeans using Bacillus subtilis bacteria found in foods such as natto, consumed as a delicacy in Japan. Most applications of biopolymers are directly involved with their potential to respond to changes from the environment in which they are dissolved. An approach aimed at understanding the structural changes, conformations and associations of polymer chains presents a high scientific interest, as well as practical applications. The objective of this work is the extraction and quantification of γ-polyglutamic acid from commercial products, natto and PGα21Ca, for studies as a flocculating agent. There was an expressive difference in the production of γ-polyglutamic acid in different natto brands. The methodology of γ-PGA extraction that represented greater efficiency was through the use of cooled methanol as a precipitation agent, where in only one extraction was obtained the biopolymer with flocculating activity, when compared to the extraction with ethyl alcohol and acetone. As for the γ-PGA extraction method of PGα21Ca, the ethyl alcohol extraction was efficient in the separation of the γ-polyglutamic acid, with only small residual of calcium being observed / Mestre
203

Mechanizmus rezistence cytoplazmatické membrány Bacillus subtilis k surfaktinu / Mechanism of surfactin self-resistance in the Bacillus subtilis cytoplasmatic membrane

Seydlová, Gabriela January 2011 (has links)
Surfactin, a lipopeptide surfactant and antibiotic produced by Bacillus subtilis, exhibits a strong membrane perturbation. One of the drawbacks hindering its commercial applications is the unknown mechanism of surfactin self-resistance in the producer. Therefore, the aim of this study was to examine the self-protective mechanisms of the cytoplasmic membrane of B. subtilis against the deleterious effect of surfactin. In order to reach this task, two isogenic pairs of strains differing only in surfactin production were constructed. It was found out that the early response of the producer is realized by increasing the amount of total lipid content in the membrane already with the onset of surfactin synthesis. This process leads to lowering the surfactin-lipid ratio in the membrane. In parallel with the growing surfactin concentration the content of anionic phospholipids with cardiolipin as the major representative rises up to 24 % of the total. Together with the fall of phosphatidylethanolamine these changes promote the membrane stabilization and protect it against the interaction with surfactin. These alterations result in higher rigidity both of the polar head and hydrophobic chain region of the membrane as the steady state anisotropy of DPH and TMA-DPH showed. After 24 h of cultivation induction of...
204

Isolation of xylanolytic multi-enzyme complexes from Bacillus subtilis SJ01

Jones, Sarah Melissa Jane January 2010 (has links)
Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs) consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The cellulosome is a cellulolytic MEC produced by anaerobic bacteria that has been studied extensively since its discovery in 1983. The aim of this study was to purify a cellulolytic and/or hemicellulolytic MEC from an aerobic bacterium of the Bacillus genus. Several bacterial isolates were identified using morphological characteristics and 16S rDNA sequencing, and screened for their ability to degrade cellulose and xylan using a MEC. The isolate that produced a high molecular weight protein fraction with the greatest ability to degrade Avicel®, carboxymethyl cellulose (CMC) and birchwood xylan was identified as Bacillus subtilis SJ01. An optimised growth medium, consisting of vitamins, trace elements, birchwood xylan (as the carbon source), and yeast and ammonium sulphate (as the nitrogen sources), increased the production of CMCase and xylanase enzymes from this bacterium. The removal of a competing bacterial strain from the culture and the inhibition of proteases also increased enzyme activities. A growth curve of B. subtilis SJ01 indicated that xylanase production was highest in early stationary growth phase and thus 84 hours was chosen as the best cell harvesting time. To purify the MECs produced by B. subtilis SJ01 size-exclusion chromatography on a Sephacryl S-400 column was used. It was concluded that (for the purposes of this study) the best method of concentrating the culture supernatant prior to loading onto Sephacryl S-400 was the use of ultrafiltration with a 50 kDa cut-off membrane. Two MECs, named C1 and C2 of 371 and 267 kDa, respectively, were purified from the culture supernatant of B. subtilis SJ01. Electrophoretic analysis revealed that these MECs consisted of 16 and 18 subunits, respectively, 4 of which degraded birchwood xylan and 5 of which degraded oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan) with higher efficiency than cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg CMC), and could therefore be considered xylanosomes. Interestingly, the MECs did not bind to insoluble birchwood xylan or Avicel® and did not contain glycosylated proteins, which are common features of cellulosomes. This study is, therefore, important in revealing the presence of MECs that differ from the cellulosome and that may have particular application in industries requiring high xylanase activity, such as the paper and pulp industry. The abundant genetic information available on B. subtilis means that this organism could also be used for genetic engineering of cellulolytic/hemicellulolytic MECs.
205

The spatial evolution of the chemotaxis proteins of the Bacillus subtilis group

Yssel, Anna Elizabeth Johanna January 2011 (has links)
The aim of this work was to study spatial evolution of the chemotaxis proteins of a group of plant-associated soil-dwelling bacteria vernacularly referred to as the B. subtilis group. This was achieved by creating homology models for the chemotaxis proteins if a suitable template was available, and by analysing the selective forces (positive, purifying or neutral) acting upon the chemotaxis proteins. Chemotaxis is the phenomenon in which bacteria direct their movement towards more favourable conditions, and is critical for processes such as obtaining nutrients, escaping toxic compounds, host colonization and bio-film formation. Members of the B. subtilis group exhibit different preferences for certain host plants, and it is therefore feasible that their chemotactic machinery are fine-tuned to respond optimally to the conditions of the various niches that the strains inhabit. Homology models were inferred for the plant growth promoting B. amyloliquefaciens FZB42 proteins CheB, CheC, CheD, CheR, CheW and CheY. The interactions between: CheC-CheD, the P1 and P2 domains of CheA with CheY and CheB, and the P4 and P5 domains of CheA with CheW were also modelled. The hydrophobic interactions contributing to intra- and inter-protein contacts were analysed. The models of the interactions between CheB and the various domains of CheA are of particular interest, because to date no structures have been solved that show an interaction between a histidine kinase (such as CheA) and a multidomain response regulator (such as CheB). Furthermore, evidence that phospho-CheB may inhibit the formation of phospho-CheY by competitively binding to the P2 domain of CheA is also presented. Proteins were analysed to determine if individual amino acid sites are under positive, neutral or purifying selection. The Methyl Accepting Chemotaxis Proteins (MCPs), CheA and CheV were also analyzed, but due to a lack of suitable templates, no homology models were constructed. Site-specific positive and purifying selection were estimated by comparing the ratios of non-synonymous to synonymous substitutions at each site in the sequences for the chemotaxis proteins as well as for the receptors McpA, McpB, and McpC. Homology models were coloured according to intensity of selective forces. It was found that the chemotaxis proteins of member of the B. subtilis group are under strong evolutionary constraints, hence it is unlikely that positive selection in these proteins are responsible for the differences in habitat preference that these organism exhibit.
206

Caracterización bioquímica de la 4-amino-5-hidroximetil-2-metilpirimidina quinasa de Salmonella typhimurium y Thermus thermophilus

Cea Medina, Pablo Antonio 01 1900 (has links)
Seminario de Título entregado a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al Título de Ingeniero en Biotecnología Molecular. / La 4-amino-5-hidroximetil-2-metilpirimidina quinasa (HMPK, EC 2.7.1.49) es una enzima perteneciente a la superfamilia riboquinasa y participa en la biosíntesis de tiamina (vitamina B1) en bacterias. Se ha descrito que esta enzima es capaz de catalizar dos fosforilaciones consecutivas dependientes de ATP altamente específicas sobre el sustrato hidroximetil pirimidina (HMP), generando como producto hidroximetil pirimidina pirofosfato. Esto contrasta notablemente con lo que se ha observado en las piridoxal quinasas de bacterias Gram positivas (HMPK/PLK, EC 2.7.1.35), un grupo de enzimas homólogas cercanas capaces de fosforilar hidroximetil pirimidina, piridoxal, piridoxina y piridoxamina, pero incapaces de catalizar dos fosforilaciones consecutivas, por lo que sólo producen hidroximetil pirimidina fosfato. Las HMPKs no han sido estudiadas tan exhaustivamente como las HMPK/PLKs y sólo hay dos caracterizaciones breves disponibles en la literatura; la de la HMPK de Escherichia coli y la de Bacillus subtilis. Por lo tanto, aún no se conoce si las propiedades observadas en las enzimas descritas son ubicuas para linajes bacterianos distintos, especialmente aquellos filogenéticamente distantes y que han sido sometido a presiones selectivas fuertes, como los extremófilos. Por esta razón, en este trabajo se realizó la caracterización bioquímica de la HMPK de la enterobacteria Salmonella typhimurium (StHMPK) y de la bacteria termófila Thermus thermophilus (TtHMPK). A través de experimentos de estequiometría de reacción y análisis de generación de productos, se demostró que ambas enzimas son capaces de catalizar dos fosforilaciones consecutivas. Experimentos de especificidad de sustrato revelaron que ambas enzimas son altamente específicas por hidroximetil pirimidina. Análisis filogenéticos mostraron que estas enzimas están estrechamente relacionadas con las HMPKs/PLK de organismos gram positivos, y estas últimas parecen ser descendientes directos de las HMPKs. Por lo tanto, para estudiar cómo estos grupos de enzimas han divergido en términos de sus actividades catalíticas, se realizaron simulaciones de dinámica molecular del complejo ternario (Mg·ATP - HMP) de StHMPK, para analizar el sitio de unión a sustrato y compararlo con el de la HMPK/PLK de Staphylococcus aureus (SaPLK). Los resultados mostraron que existe un alto grado de conservación entre ambos sitios, existiendo sólo unas pocas diferencias que podrían explicar la divergencia funcional observada, principalmente la presencia de una treonina adyacente a la base catalítica en StHMPK, que es reemplazada por una alanina en SaPLK, y la presencia de una glutamina en StHMPK que forma puentes de hidrógeno con el HMP. La caracterización cinética de StHMPK y TtHMPK mostró que ambas enzimas poseen una KM similar para HMP (cercana a 30μM) y que la Vmax para TtHMPK es un orden de magnitud menor que para StHMPK a 37 °C. Sin embargo, estos parámetros fueron obtenidos para las curvas de saturación de HMP, las cuales mostraban un comportamiento del tipo Michaelis-Menten, mientras que las curvas de saturación para ATP mostraron una clara desviación de este modelo y por lo tanto, no se pudieron determinar parámetros cinéticos. Finalmente, se realizó una caracterización estructural y biofísica para evaluar diferencias de estabilidad. Ambas enzimas parecen ser monómeros en las condiciones estudiadas, a diferencia de lo reportado para la enzima de E. coli que forma un tetrámero. Experimentos de desplegamiento por temperatura y agentes químicos mostraron que TtHMPK es significativamente más estable que StHMPK. Las bases estructurales de estas diferencias fueron analizadas mediante simulaciones de dinámica molecular, las que revelaron que la proteína termoestable es más rígida, tiene un menor contenido de residuos polares en el núcleo y tiene mayor cantidad de interacciones electrostáticas que su homólogo mesoestable. / 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (HMPK, EC 2.7.1.49) is a bacterial enzyme that belongs to the ribokinase superfamily and participates in the thiamine (vitamine B1) biosynthetic pathway. It has been described that this enzyme is capable to catalyze two consecutive highly specific ATP dependent phosphorylations on the substrate hydroxymethyl pyrimidine, yielding hydroxymethyl pyrimidine pyrophosphate. This contrast notoriously with what has been observed for the closely related homologous enzymes pyridoxal kinases from Gram positive bacteria (HMPK/PLK, EC 2.7.1.35), which can phosphorylate hydroxymethyl pyrimidine, pyridoxal, pyridoxine and pyridoxamine, but are unable to catalyze two consecutive phosphorylations, thus only produce hydroxymethyl pyrimidine phosphate. HMPKs have not been as extensively studied as HMPKs/PLK, and only two brief biochemical characterizations are available on the literature; the characterization of the HMPK from Escherichia coli and from Bacillus subtilis. Therefore, it is still unknown whether the properties observed in the described enzymes are ubiquitous among different bacterial lineages, especially those that come from a very distinct phylogenetic background and have been subject to strong selective pressures, as the enzymes from extremophilic organisms. For this reason, in this work we address the biochemical characterization of the HMPK from the enterobacteria Salmonella typhimurium (StHMPK) and the thermophilic bacteria Thermus thermophilus (TtHMPK). Through stoichiometric experiments and product generation analysis, it was established that both enzymes are able to perform two consecutive phosphorylations. Substrate specificity experiments revealed that both enzymes are highly specific for hydroxymethyl pyrimidine. Phylogenetic analysis of these enzymes showed that are closely related to HMPKs/PLK from Gram positive organisms, being the later a direct descendant from HMPKs. Therefore, to study how these two groups of enzymes have diverged so much in terms of their catalytic activities, we analysed the substrate binding site of StHMPK by molecular dynamics simulations of the ternary complex (Mg·ATP - HMP) and compared it to the binding site of the PLK from Staphylococcus aureus (SaPLK). The results showed that there is an overall great conservation among the active sites, with just a few differences that could be responsible for the functional divergences observed, mainly the presence of a threonine residue adjacent to the catalytic base in StHMPK which is replaced by an alanine in SaPLK, and the presence of a glutamine that forms hydrogen bonds with the HMP in StHMPK. Kinetic characterization of StHMPK and TtHMPK showed that both enzymes have a similar KM for HMP (around 30 μM) while the Vmax for TtHMPK is one order of magnitude lower than the Vmax for StHMPK. However, these parameters were obtained only for HMP saturation curves, which showed a Michaelis-Menten behaviour, whereas ATP saturation curves displayed a clear deviation from a Michaelis-Menten model and therefore, no kinetic parameters could be deduced from these experiments. Finally, a biophysical and structural characterization to assess stability differences was performed. Both enzymes seem to be in monomeric state under the conditions assayed, in contrast with what was reported for the enzyme from E. coli, which forms a tetramer. Thermal and chemical unfolding experiments showed that TtHMPK is significantly more stable than StHMPK. The structural basis for these differences were investigated through molecular dynamics simulations, which revealed that the thermostable protein is more rigid, has a reduced content of polar amino acids in its core, and has more electrostatic interactions than its mesostable homologous. / Julio del 2019
207

Studium mikrobiální degradace materiálů na bázi polykaprolaktonu / Microbial Degradation of Polycaprolactone-based Materials

Damborský, Pavel January 2013 (has links)
Diplomová práce se zabývá vlivem nutričních a aeračních faktorů na produkci lipáz bakterií Bacillus subtilis (CCM 1999). Produkce lipáz byla studována zejména z hlediska katalytického působení lipáz při degradaci polyesterových řetězců. Mezi studované parametry patřily: růst bakterií, lipolytická aktivita, pH optimum, teplotní optimum, tepelná stabilita, proteolytická aktivita, množství bílkovin, atd. a to v různých typech živných medií zaočkovaných Bacillus subtilis. Jedna série vzorků kultivačních médií pro BS na bázi: pepton a kvasničný extrakt (NB), pepton, kvasničný extrakt s 2% přídavkem (w/v) glukózy (NBG) a minerální médium s kvasničným extraktem (MS-YE) obsahovala jeden PCL vzorek o definovaných rozměrech (Mn = 10 kDa, = 1.4). Experimenty probíhaly po dobu 21 dnů pří rychlosti třepání 160 a 200 rpm. Přítomnost PCL způsobila v obou typech médií (NB, NBG) inokulovaných BS zvýšení lipolytické aktivity, což naznačuje, uvolnění a následné uplatnění se nízko-molekulekulárních řetězců PCL jako substrátů pro BS. BS kultivovaný v MS-YE medium vykazoval ve srovnání s NB a NBG médii nízké hodnoty lipolytické aktivity a to i v přítomnost PCL. Během experimentů se hodnota pH posunula z neutrální (pH 7.0) do alkalické (pH 8.5-9.3) oblasti a to ve všech typech médií s i bez přítomnosti PCL vzorku v důsledku metabolických pochodů BS využívajících různé substráty. Lipolytické enzymy stanovené v supernatanech bez bakteriálních buněk vykazují dvě pH optima v přítomnosti PCL, pH 7 a 9. V nepřítomnosti polymeru vykazují pouze jedno pH optimum při pH 7. Na základě měření tepelné stability bylo prokázáno, že extracelulární lipázy jsou relativně termostabilní enzymy, zejména v nepřítomnosti polymeru. Dále byla provedena základní proteomická analýza lipáz produkovaných bakterií Bacillus subtilis v NBG médiu pomocí metody peptidového mapování (PMF). Byla ověřena přítomnost proteinů s molární hmotnosti (19.3 kDa) pomocí FPLC. SDS-PAGE a IEF-PAGE prokázaly přítomnost těchto proteinů v obou studovaných mediích inokulovaných BS (NBG vs. NBG/PCL). Zásadní rozdíly proteinového složení v přítomnosti PCL nebyly potvrzeny a identifikace pomoci MALDI-TOF hmotnostní spektrometrie nestanovila žádnou lipázu. Proces degradace v PCL vzorcích byl vyhodnocen také na základě hmotnostních úbytků, které byly zjištěny ve všech typech médií inokulovaných BS pravděpodobně v důsledku synergického účinku enzymaticky-katalyzované a biotické hydrolýzy v alkalickém prostředí. . Modelová degradační studie PCL a jeho kompozitu s oxidem grafenu (2.7 hm.%, GO) byla provedena v přítomnosti bakterie Bacillus subtilis v NBG při 30 °C a počátečním pH 7 po dobu tří týdnů. Hmotností úbytky PCL filmů se postupně zvyšovaly během celého degradačního testu až ke 12 hm%. Degradace PLC/GO kompozitu probíhala pomaleji, což je prokázáno maximální hmotnostním úbytkem 5 hm%. Podobný charakter elučních křivek PCL a jeho kompozitu stanovený pomocí SEC potvrzoval snížení molární hmotnosti po degradaci.
208

Adaptace cytoplazmatické membrány neprodukčního kmene Bacillus subtilis k surfaktinu. / Cytoplasmic membrane adaptation to surfactin in Bacillus subtilis non-producing strain

Stružinská, Olga January 2010 (has links)
Cytoplasmic membrane adaptation to surfactin in Bacillus subtilis 168 non-producing strain Surfactin, the most potent surface active compound and antibiotic is produced by bacteria of the genus Bacillus. Surfactin interacts with membrane bilayers, that results in destabilization and permeabilization of this structure. However mechanism of surfactin self-resistance in the producer's membrane is not understood. The aim of this study was to characterize the adaptive processes occurring at the level of cytoplasmic membrane of surfactin non-producing strain B. subtilis 168, which was exposed to exogenously added surfactin during the exponential phase of growth. The cultivation protocol of B. subtilis growth on agar media plates supplemented with surfactin was developed. Two surfactin concentrations that inhibit (400 g/ml) and even stimulate (300 g/ml) the growth of B. subtilis 168 strain were assessed. Surfactin brought about the growth arrest for 3 hours and the restored growth rate decreased in the case of inhibitory concentration, whereas the stimulatory concentration increased the growth rate and resulted in higher final density of the population. TLC was performed to analyze the polar head groups of membrane phospholipids. The portion of phosphatidylserine was found to increase at both surfactin...
209

Development of genetically intact bioengineered spores of Bacillus subtilis

Flores Quijano, Juan Manuel de Jesus January 2022 (has links)
Genetic engineering tools are under continuous development. However, hesitation by consumers and governments regarding consumption of genetically modified organism (GMO) affects taking advantage of developments in biotechnology. While being a complicated issue to address, this challenge inspired us to investigate whether it is possible to engineer organisms without altering their wild-type genomes, but with the same customizability level offered by genetic engineering; that is, having the capacity of expressing foreign proteins not codified by the wild-type genome. I used B. subtilis spores as a model organism for this purpose. I took advantage of the sporulation process during which two compartments with differential expression, or different gene expression patterns co-exist, the mother cell and the forespore, and I programmed a single designer plasmid to behave differently in each compartment: the plasmid in the mother cell modifies the spore phenotype, while the plasmid in the forespore undergoes self-digestion. At the end of sporulation, the mother cell lyses and releases the final product — a plasmid-free engineered spore. Following this, I incorporated the forespore-specific "self-digestion" gene circuit into a variety of plasmids with different purposes, including the generation of spores expressing GFP on their protective coats and the artificial induction of sporulation, both of them as a proof-of-concept of genetically intact bioengineered organisms. Production of the different types of genetically intact bioengineered spores resulted in an average of nearly 90% of them free of detectible plasmid or genome alterations. Spores of B. subtilis and other species overall continue to gain attention in the biotechnology sector, with potential applications ranging from biopesticides, probiotics, and vaccines to energy-converting materials, self-healing concrete, and whole-cell biocatalysts. While spores represent a special case of multiple-compartment organisms among bacteria, most eukaryotic organisms possess multiple compartments, structures, or tissues with differential expression, including plants and animals. Therefore, our results in this study could serve as a starting point for new ideas and methods for the genetic modification-free engineering of complex organisms or parts of them.
210

The Impacts of Yeast Fermentation and Bacillus Subtilis Dietary Products on Sperm Quality and Semen Microbiota of Aged White Leghorn Roosters

Nascimento dos Santos, Midian 11 August 2017 (has links)
Alternatives to antibiotic growth promoters have been widely exploited due to concerns about antimicrobial resistance. These feed additives improve growth, in part, by modulating intestinal microbiota. However, their impact on male reproductive performance is not well elucidated. Therefore, the objective of this study was to evaluate the impacts of a yeast fermentation product (YP) and Bacillus subtilis on rooster semen quality and microbiota. Dietary supplementation of YP linearly increased the concentration of yeast and bacteria in semen, whereas it linearly decreased sperm motility, suggesting that bacteria attached to yeast were excreted from the gut, contaminated semen at the cloaca and then decreased sperm movement. However, direct in vitro exposure of semen or dietary supplementation with B. subtilis did not affect semen quality or seminal concentration of this bacterium, likely because Bacillus naturally occur in semen. In conclusion, unlike B. subtilis, dietary YP can alter semen quality by altering semen microbiota.

Page generated in 0.0661 seconds