• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 22
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 28
  • 20
  • 18
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Degradação anaeróbia de tolueno em reatores em batelada / not available

Silva, Edmar Delegá da 13 February 2004 (has links)
O presente trabalho avaliou a degradação anaeróbia de tolueno por Bactérias Redutoras de Sulfato (BRS), utilizando como inóculo lodo anaeróbio proveniente de reator UASB. Os ensaios foram realizados com reatores em batelada de 2300 mL contendo meio de cultura específico para o crescimento de BRS. No ensaio de enriquecimento, com lactato de sódio (2230 mg/L) e acetato de sódio (670 mg/L) na ausência de tolueno, ocorreu consumo total de sulfato (aproximadamente 1070 mg/L) em 192 horas e percentual de metano de 31% em 72 horas. A degradação do tolueno foi realizada em reatores sulfetogênicos e metanogênicos. Nos reatores sulfetogênicos alimentados com 2,1 mg/L e 7,7 mg/L houve degradação total do tolueno em 264 e 792 horas, respectivamente. Nesses reatores foi observado consumo total de sulfato e percentual de metano de aproximadamente 20,9%. Nos reatores metanogênicos a degradação do tolueno foi de, no máximo, 53%, e percentual de metano de 27,3% em 1032 horas. Nas condições sulfetogênicas, a degradação do tolueno foi mais rápida se comparada às condições metanogênicas. E em ambas as condições, a produção de metano foi relacionada aos bacilos hidrogenotróficos. As alterações na diversidade da população microbiana presente nos reatores, observadas em microscopia ótica, foram confirmadas nas análises por biologia molecular. / The present work evaluated the anaerobic degradation of toluene by sulfate reducing bacteria (SRB), using anaerobic sludge from reactor UASB as inoculum. The essays were accomplished in batch reactors of 2300 mL containing specific culture medium for the growth of SRB. In the enrichment essay with sodium lactate (2230 mg/L) and sodium acetate (670 mg/L) without toluene accured total consumption of sulfate (approximately 1070 mg/L) in 192 hours and percentile of methane of 31% in 72 hours. The toluene degradation it was accomplished in sulfetogenics and methanogenics reactors. In the sulfetogenics reactors fed with 2,1 mg/L and 7,7 mg/L there was total degradation of toluene in 264 and 792 hours, respectively. In those reactors it was observed total consumption of sulfate and percentile of methane of approximately 20.9%. In the methanogenic reactors the degradation of toluene was to the utmost of 53%, accompanied of production of 27.3% of methane in 1032 hours. In the sulfetogenics conditions, the degradation of tolueno was faster if compared to the methanogenic conditions. In both conditions, the methane production was related to the hidrogenotrophic bacilli. The alterations in the diversity of the microbial population present in the reactors, observed by optic microscopy, were confirmed in the analysis by molecular biology.
42

Detecção de bactérias redutoras de sulfato em efluente e sedimento de mina de urânio

Sheila Kênia de Almeida 17 August 2005 (has links)
Um dos graves problemas ambientais oriundos da indústria de mineração é a drenagem ácida de mina que ocorre quando a pirita e outros minerais sulfetados são oxidados devido à presença de oxigênio e água, produzindo ácido sulfúrico que solubiliza metais presentes no solo/rocha. Em uma planta das Indústrias Nucleares do Brasil INB, na Unidade de Tratamento de Minérios (UTM) este problema tem se pronunciado de forma preocupante levando a dissolução de espécies radioativas e metálicas presentes. O tratamento da água ácida usando bactérias redutoras de sulfato, proporciona decréscimo da acidez que é decorrente da redução do sulfato a sulfito e precipitação dos metais como sulfetos. Nesse contexto, o presente estudo foi realizado visando a caracterizar sazonalmente e espacialmente populações de bactérias redutoras de sulfato (BRS) nos efluentes líquidos e amostras de sedimento da cava da mina (CM) e nos bota-foras 4 e 8 (BF4 e BF8) coletadas na UTM. Tais informações poderão permitir posteriormente, estudar mecanismos de biomanipulação a fim de remediar situações impactantes. Menores valores de pH , abaixo de 3,5, foram medidos no período de março a abril em amostras de água da cava da mina e a maior população de BRS (2,8 NMP. mL-1) foi observada em fevereiro em amostras do BF8. Os valores encontrados para matéria orgânica na água foram menores do que aqueles encontrados no sedimento. A concentração de oxigênio dissolvido na água variou de 0,65 g/L a 13,3 g/L. As amostras de sedimento apresentaram maiores valores de BRS (10,2 NMP/mL), quando comparadas com amostras de água (0,63 NMP/mL). Tais resultados eram esperados uma vez que, nas amostras de água coletadas próximas ao sedimento foram observadas menores concentrações de oxigênio dissolvido (7,10g/L) e maiores concentrações de matéria orgânica disponível (17,0 mg/L) quando os resultados foram comparados com aqueles obtidos para amostras de água coletadas na superfície (0,004mg/L). Os resultados mostram, portanto, que o efluente ácido gerado apresenta altos teores de metais estáveis e radioativos, sulfato, baixo pH e presença de bactérias redutoras de sulfato. / One of the most serious environmental problems created by the mining industry is acid mine drainage. In one plant of Nuclear Industries of Brazil - INB, this problem is a matter of concern. The presence of iron sulfites, such as pyrite, generates water with acidity above the levels allowed by the legislation and therefore, inappropriate for releasing straight into the environment. The industry maintain a high cost treatment in acid water from mines and waste disposal which consists in neutralizing and precipitating heavy metals. The treatment of acid water using SRB (sulfate-reducing bacteria) has been used in other countries with quite good technical results as well as economical advantages and thus, the object of this research. The use Sulfate Reducing Bacteria takes to a decreasing of the acidity by reducing sulfate to sulfite and precipitating the stable metals as sulfides. A seasonal study was carried out on the sulfate-reducing bacteria present in the liquid effluent discharged from two wastes disposal of the uranium mine, in phase of decommission, in Caldas/MG. This study shows the presence of SRB in the analyzed environmental, as well as some factors that are related with the amount of SRB presents, such as: dissolved oxygen, pH and organic matter. SRB was presented in water samples with high concentrations of heavy metals and low pH values, as well as in samples with high oxygen levels. The sediment samples were the preferential place for SRB occurrence and site BF8 presented the highest values of SRB.
43

Etude de la diversité microbienne (bactéries et archées) d'un environnement hypersalé tunisien, le Chott El Jerid : applications biotechnologiques / Microbial diversity (bacteria and archaea) of Tunisian hypersaline environment, Chott El Jerid : biotechnological applications

Ben Abdallah, Manel 15 December 2016 (has links)
Le présent travail s’intéresse à l’étude de la diversité des communautés procaryotiques, basée sur le gène codant pour l’ARNr 16S et sur les gènes codants pour la sous-unité β du sulfite réductase dissimilatrice (dsrB) et la sous-unité alpha de la méthyl-coenzyme M réductase (mcrA), pour étudier la diversité de la communauté des bactéries sulfato-réductrices et des méthanogènes, respectivement à partir des échantillons collectés en saison sèche ou pluvieuse du Chott El Jerid. Les analyses des séquences du gène codant pour l’ARNr 16S ont montré que les bactéries regroupées aux Proteobacteria et Firmicutes sont détectés dans les deux saisons alors que les séquences appartenant au groupe taxonomique Bacteroidetes, Actinobacteria et Betaproteobacteria sont apparues uniquement dans la saison pluvieuse. Le groupe Deinococcus-Thermus sont observés que dans la saison sèche. Dans le domaine des archées, la plupart des séquences appartiennent au phylum Euryachaeota, détecté dans les deux saisons, alors que, le phylum Crenarchaeota apparait uniquement dans la saison pluvieuse. En plus, les bactéries sulfato-réductrices, appartenant à la classe Deltaproteobacteria, sont fréquents notamment à la saison pluvieuse prouvée déjà par les deux techniques DGGE et qPCR. A partir des cultures d’enrichissement, de nombreuses bactéries anaérobies fermentaires appartiennent aux familles Halanaerobiaceae et Halobacteroidaceae. Les analyses phylogénétiques ainsi que les caractéristiques phénotypiques et physiologiques montrent une nouvelle souche Sporohalobacter salinus proche de l’espèce Sporohalobacter lortetii, seule espèce décrite à ce jour du genre Sporohalobacter. / The present work concerns microbial biodiversity of prokaryotic communities, sulfate-reducing bacteria, and methanogens targeting the 16S rRNA gene and functional gene markers encoding the dissimilatory sulfite reductase β-subunit gene (dsrB) and alpha subunit of the methyl-coenzyme M reductase (mcrA), respectively from samples collected in the dry and wet seasons from Chott El Jerid. Phylogenetic analysis targeting the 16S rRNA gene showed that bacteria were grouped to Proteobacteria and Firmicutes detected at both seasons, whereas, Bacteroidetes, Actinobacteria and Betaproteobacteria were present only in the wet season. Deinococcus-Thermus group were observed in the dry season. Archaeal sequences were belonged to the phyla of Euryarchaeota in both seasons and Crenarchaeota was appeared in wet season. Sulfate-reducing bacteria, related to Deltaproteobacteria class were dominant mainly in wet season proved by two techniques DGGE and QPCR. From enrichment cultures, anaerobic fermentative bacteria were isolated in pure cultures, related to Halanaerobiaceae and Halobacteroidaceae families. Phylogenetic analysis, phenotypic and physiological characteristics showed a novel strain Sporohalobacter salinus related to Sporohalobacter lortetii, an unique species of genus Sporohalobacter described until now.
44

Avaliação de biocidas no controle da corrosão microbiologicamente induzida do aço carbono 1020 por bactérias redutoras de sulfato / Evaluation of biocides on the control of microbiologically-influenced corrosion of 1020 carbon steel by sulfate-reducing bacteria

Priscila Santos da Silva 08 May 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Bactérias redutoras de sulfato (BRS) são os principais micro-organismos envolvidos na corrosão microbiologicamente induzida (CMI). Estas bactérias reduzem o sulfato, tendo como resultado a produção de H2S, o que pode influenciar os processos anódico e catódico na corrosão de materiais metálicos em ambientes marinhos, óleos e solos úmidos. Uma das formas de prevenir e controlar esse tipo de corrosão é a adição de biocidas ao meio corrosivo. Esta dissertação tem como objetivo avaliar o uso de biocidas no controle da CMI do aço AISI 1020 por BRS. Para isto, o comportamento da CMI no aço foi avaliado em água do mar sintética, em condições de anaerobiose, na ausência e na presença de uma cultura mista contendo BRS. Um biocida natural (óleo de alho) e outro comercial (glutaraldeído) foram utilizados para controlar a corrosão causada por estas bactérias. Duas formas de adição de biocida foram avaliadas: antes da formação do biofilme e após sua formação na superfície do metal. O crescimento microbiano na superfície do aço foi avaliado através da quantificação das BRS sésseis, pelo método do número mais provável (NMP). O comportamento eletroquímico do aço, na ausência e na presença de BRS e também para os ensaios com biocidas, foi estudado através das técnicas de espectroscopia de impedância eletroquímica (EIE) e polarização potenciodinâmica, sempre usando água do mar sintética como meio eletrolítico. A formação de biofilme e de produtos de corrosão na superfície do aço foi observada através da microscopia eletrônica de varredura (MEV). Os resultados mostraram que o aço exposto ao meio contendo BRS apresentou um processo corrosivo mais acelerado, quando comparado aos sistemas na ausência de micro-organismo. Esse processo foi evidenciado por um decréscimo na magnitude do arco capacitivo, nos ensaios de EIE, e um aumento da densidade de corrente de corrosão (Icorr), nos ensaios de polarização. Na análise de MEV, foi possível observar a formação de corrosão localizada após a remoção do biofilme da superfície. Os ensaios com biocidas, adicionados antes da formação de biofilmes, mostraram uma redução no número de bactérias sésseis, quando comparados com os ensaios sem biocida realizados pelo mesmo período de tempo (7 dias). Foi verificado também um decréscimo do processo corrosivo do aço, evidenciado através de aumento nos arcos capacitivos, nos ensaios de EIE e pelos menores valores de Icorr nos ensaios de polarização, quando comparados com o biofilme formado sem biocidas, nas mesmas condições. Apesar de não ter inibido completamente o crescimento das BRS sésseis, o óleo de alho apresentou maior redução no processo corrosivo quando comparado ao glutaraldeído, indicando sua possível aplicação como biocida natural nestas condições. Os ensaios realizados com biocidas adicionados após a formação do biofilme mostraram que o glutaraldeído apresentou alta eficácia em reduzir o número de células sésseis. Já o óleo de alho exibiu uma ação menos efetiva, sugerindo que este composto não conseguiu penetrar completamente a matriz do biofilme. Entretanto, ambos causaram aceleração do processo corrosivo do aço no meio estudado após 7 dias de exposição / Sulfate-reducing bacteria (SRB) are the most important microorganisms involved in the microbiologically-influenced corrosion (MIC). These bacteria reduce sulfate, resulting in the production of H2S, which may influence the anodic and cathodic processes in the corrosion of metallic materials in marine environments, oil and wet soils. One way to prevent and control this type of corrosion is the addition of biocides to the corrosive environment. This work aims to evaluate the use of biocides to control MIC of AISI 1020 steel by SRB. For this, the behavior of MIC in carbon steel was evaluated in artificial seawater, under anaerobic conditions, in the absence and in the presence of a mixed culture containing SRB. A natural biocide (garlic oil) and a commercial one (glutaraldehyde) were used to control the corrosion caused by these bacteria. Two ways of biocide addition were evaluated: before the formation of biofilm and after its formation on the metal surface. Microbial growth on the steel surface was evaluated by quantifying the sessile SRB, by using the most probable number method (MPN).The electrochemical behavior of the steel in the absence and presence of SRB, as well as in the experiments containing the biocides, was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, always using artificial seawater as the electrolytic medium. The biofilm formation and the corrosion products on the steel surface were observed by scanning electron microscopy (SEM).The results showed that the steel exposed to medium containing SRB exhibited an accelerated corrosion process when compared to systems without the microorganisms. This process was evidenced by a decrease in the magnitude of the capacitive loop, in EIS experiments, and an increase of the corrosion current density (Icorr), in polarization tests. By SEM analysis, it was possible to observe the formation of localized corrosion after the biofilm removal. The experiments with biocides, added before the formation of biofilms, showed a reduction in the number of sessile bacteria, compared with the tests without biocide performed on the same time period (7 days). It was also found a decrease in steel corrosive process, evidenced by an increase in the capacitive loops in the EIS tests, and by the smaller Icorr values in polarization tests, when compared to the biofilm formatted without biocides under the same conditions. Although it has not completely inhibited the growth of BRS sessile, garlic oil showed a greater reduction in corrosion process when compared to glutaraldehyde, indicating its possible application as a natural biocide under these conditions. The experiments performed with biocides added after the biofilm formation showed that glutaraldehyde exhibited high efficacy in reducing the number of sessile cells. On the contrary, the garlic oil exhibited a less effective action, suggesting that this compound could not completely penetrate the biofilm matrix. However, both biocides accelerated the steel corrosion process in the studied medium after 7 days of exposure
45

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
46

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
47

Assessment of biogeochemical deposits in landfill leachate drainage systems phase II

Saleh, Abdul R. Mulla 01 June 2006 (has links)
Land disposal of solid waste is a vital component of any solid waste management system. Design, operation and closure of municipal solid waste (MSW) landfills are required by regulations to control leachate and gases generated during the life, closure,and post-closure of the facility. Clogging of leachate drainage and removal systems in landfills is a common phenomenon and has been acknowledged in several landfills throughout the United States and abroad. This project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Leachate characteristics data obtained in Phase I was processed and analyzed, along with supplementary data obtained in Phase II on liquid and solid phase testing. Leachate samples from the landfill and lysimeters indicated the presence of iron and sulfate-reducing bacteria. These bacteria are known to facilitate biologically induced precipitate formation.The mechanism by which biologically ind uced precipitate may form begins with oxidizing acetate by iron and sulfate-reducing bacteria, reducing sulfate to sulfide and ferric iron to ferrous, and then forming calcium carbonate, iron sulfate, and possibly dolomite and other minerals.The results show that the clogging mechanism is driven by two major processes: transformation of volatile acids to substrates by iron and sulfate-reducing bacteria causing local pH and total carbonate to increase, which accelerate calcium carbonate precipitation, and thermodynamically favored reactions in supersaturated conditions based on saturation indices of calcium, sulfide, iron, and other species with respect to minerals. For each 1 mg of consumed volatile acids there were 1.7 mg of calcium, 0.28 mg of sulfate, and 0.03 mg of iron removed. Field and lysimeter precipitate samples were analyzed (using X-Ray Diffraction, Scanning Electron microscopy, and Electron Dispersive Spectroscopy) and correlated with geochemical modeling of leachate const ituents. Precipitate analyses showed the presence of calcium carbonate, brushite (calcium phosphate),and dolomite, where as geochemical modeling showed that calcium carbonate, hydroxyapatite (complex of calcium phosphate), dolomite, pyrite, and siderite may be formed from field and lysimeter leachate constituents. The results also showed that submerged and stagnant conditions in the leachate collction systems accelerate the precipitation process.
48

Sulfate reduction for remediation of gypsiferous soils and solid wastes / Application de la réduction biologique des sulfates pour le traitement des sols et déchets gypseux

Kijjanapanich, Pimluck 18 November 2013 (has links)
Ce travail de thèse visait à développer des procédés d'élimination des sulfates permettant la réduction des teneurs en sulfates des DC et des sols gypsifères afin d'améliorer la qualité des déchets et des sols à des fins agricoles ou des applications de recyclage. Le concept de traitement des DC par lixiviation à l'eau a été étudié (colonne de lixiviation). Les sulfates contenus dans les lixiviats sont ensuite éliminés à l'aide d'un traitement chimique ou biologique. L'approche biologique mise en oeuvre dans ce travail a consisté à mettre en oeuvre la réduction biologique des sulfates au sein de bioréacteurs de conception différente (i.e. réacteur UASB, réacteur à lit fluidisé inverse (IFB) ou d'un réacteur anaérobie gas lift). L'efficacité d'élimination des sulfates la plus élevée atteinte par ces trois systèmes varie de 75 à 95%. L'eau traitée provenant du bioréacteur peut alors ensuite être réutilisé dans la colonne de lixiviation. Le traitement chimique des sulfates est une option alternative pour traiter les lixiviats. Plusieurs produits chimiques ont été testés, (chlorure de baryum, nitrate de plomb (II), le chlorure de calcium, le carbonate de calcium, l'oxyde de calcium, et du sable recouvert d'un mélange d'oxydes d'aluminium et de fer). Un rendement de 99,9% d'élimination des sulfates (par précipitation) a été atteint avec le chlorure de baryum et le nitrate de plomb (II).Pour le traitement des DMA et des sols gypseux, cinq types de substrat organique tel que les copeaux de bambou, les boues d'épuration des eaux usées municipales, de l'écorce de riz, de coques de noix de coco broyée et des boues d'épuration des eaux usées d'une ferme porcine ont été testés comme donneurs d'électrons pour la réduction biologique des sulfates. L'efficacité de la réduction des sulfates la plus élevé (84%) a été obtenue en utilisant un mélange d'écorce de riz, de coques de noix de coco broyée et des boues d'épuration des eaux usées d'une ferme porcine comme donneurs d'électrons. Ensuite, ce mélange organique a été utilisé pour le traitement des sols gypsifères. Le sol de la mine de gypse a été mélangé avec le mélange organique en différentes proportions (10, 20, 30 et 40% de sol). Le rendement le plus élevé de 59 % de réduction des sulfates a été atteint dans le mélange de sol qui contient 40 % de matière organique. L'élimination des sulfures présents dans l'effluent des procédés de réduction biologique des sulfates est nécessaire. En effet, les sulfures peuvent causer plusieurs impacts environnementaux ou être ré-oxydé en sulfate si ils sont directement rejetés dans l'environnement. Le traitement électrochimique des effluents est l'une des solutions alternatives pour la récupération du soufre élémentaire à partir des sulfures. Une électrode de graphite a été testée comme électrode permettant l'oxydation électrochimique des sulfures en soufre élémentaire. Une électrode en graphite de grande surface est nécessaire afin d'avoir une résistance électrique la plus faible possible. La vitesse d'oxydation des sulfures la plus élevée est atteinte lors de l'application d'une résistance de 30 Ω à une concentration en sulfure de 250 mg.L-1 / Solid wastes containing sulfate, such as construction and demolition debris (CDD), are an important source of pollution, which can create a lot of environmental problems. It is suggested that these wastes have to be separated from other wastes, especially organic waste, and place it in a specific area of the landfill. This results in the rapid rise of the disposal costs of these gypsum wastes. Although these wastes can be reused as soil amendment or to make building materials, a concern has been raised by regulators regarding the chemical characteristics of the material and the potential risks to human health and the environment due to CDD containing heavy metals and a high sulfate content. Soils containing gypsum, namely gypsiferous soils, also have several problems during agricultural development such as low water retention capacity, shallow depth to a hardpan and vertical crusting. In some mining areas, gypsiferous soil problems occur, coupled with acid mine drainage (AMD) problems which cause a significant environmental threat. Reduction of the sulfate content of these wastes and soils is an option to overcome the above mentioned problems. This study aimed to develop sulfate removal systems to reduce the sulfate content of CDD and gypsiferous soils in order to decrease the amount of solid wastes as well as to improve the quality of wastes and soils for recycling purposes or agricultural applications. The treatment concept leaches the gypsum contained in the CDD by water in a leaching step. The sulfate containing leachate is further treated in biotic or abiotic systems. Biological sulfate reduction systems used in this research were the Upflow Anaerobic Sludge Blanket (UASB) reactor, Inverse Fluidized Bed (IFB) Reactor and Gas Lift Anaerobic Membrane Bioreactor (GL-AnMBR). The highest sulfate removal efficiency achieved from these three systems ranges from 75 to 95%. The treated water from the bioreactor can then be reused in the leaching column. Chemical sulfate removal (abiotic system) is an alternative option to treat the CDD leachate. Several chemicals were tested including barium chloride, lead(II) nitrate, calcium chloride, calcium carbonate, calcium oxide, aluminium oxide and iron oxide coated sand. A sulfate removal efficiency of 99.9% was achieved with barium chloride and lead(II) nitrate.For AMD and gypsiferous soils treatment, five types of organic substrate including bamboo chips (BC), municipal wastewater treatment sludge (MWTS), rice husk (RH), coconut husk chip (CHC) and pig farm wastewater treatment sludge (PWTS) were tested as electron donors for biological sulfate reduction treating AMD. The highest sulfate reduction efficiency (84%) was achieved when using the combination of PWTS, RH and CHC as electron donors. Then, this organic mixture was further used for treatment of the gypsiferous soils. The gypsum mine soil (overburden) was mixed with an organic mixture in different amounts including 10, 20, 30 and 40% of soil. The highest sulfate removal efficiency of 59% was achieved in the soil mixture which contained 40% organic material.The removal of sulfide from the effluent of the biological sulfate reduction process is required as sulfide can cause several environmental impacts or be re-oxidized to sulfate if directly discharged to the environment. Electrochemical treatment is one of the alternatives for sulfur recovery from aqueous sulfide. A non-catalyzed graphite electrode was tested as electrode for the electrochemical sulfide oxidation. A high surface area of the graphite electrode is required in order to have less internal resistance as much as possible. The highest sulfide oxidation rate was achieved when using the external resistance at 30 Ω at a sulfide concentration of 250 mg L-1
49

Efeito de surfactantes na estimativa da densidade bacteriana em amostras de petróleo / The effect of surfactants on the estimation bacterial density in petroleum samples

Kelly Yaeko Miyashiro de Almeida 30 January 2007 (has links)
Foi examinado o efeito dos surfactantes polisorbato 60 (Tween 60), polisorbato 80 (Tween 80), brometo de cetil trimetil amônio (CTAB) e lauril sulfato de sódio (SDS) na estimativa da densidade de Bactérias Redutoras de Sulfato (BRS) e Bactérias Anaeróbias Heterotróficas Totais (BANHT) em amostras de petróleo. Para a realização dos experimentos, foram selecionadas três amostras com diferentes proporções de óleo e água de forma a representar amostras reais. A primeira amostra contém uma alta proporção de óleo, a segunda uma proporção média e a última amostra uma baixa proporção de óleo. A densidade bacteriana foi estimada através do método do Número Mais Provável (NMP). As concentrações dos surfactantes empregadas neste estudo foram estabelecidas através de estudo anterior. Os resultados demonstram que nas amostras com alta e média proporção de óleo, a adição dos surfactantes não foi favorável a um aumento na quantificação de BRS. Por outro lado, o Tween 60 e o Tween 80 mostraram um aumento significativo na quantificação de BANHT quando aplicados na concentração de 0,01% e 0,03% m/v, respectivamente. O CTAB favoreceu o crescimento de BRS e BANHT na amostra com baixa proporção de óleo quando sua concentração foi de 0,001% m/v e 0,0001% m/v, respectivamente / The effect of the surfactants (Tween 60), polyoxyethylene monooleate (Tween 80), cetyl, trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) on the estimation of bacterial density (sulfate reducing bacteria SRB and General Anaerobic Bacteria GanB) was examined in the petroleum samples. In order to carry out the experiments, we selected three different mixtures of oil and water to be representative of the real samples. The first one contains a high proportion of oil, the second contains a medium proportion and the last one contains a low proportion. The most probable number (MPN) was used to estimate the bacterial density. The concentrations of the surfactants used in this work were determined in a previous study. The results showed that the addition of surfactants did not improve the SRB quantification for the high or medium proportion of oil of the petroleum samples. On other hand, Tween 60 and Tween 80 showed a significantly increase on the GanB quantification when their concentrations were 0.01% and 0.03% m/v, respectively. CTAB increased the SRB and GanB estimation for the low proportion of oil of the petroleum sample when its concentration was 0.001% and 0.0001% m/v, respectively
50

Desenvolvimento de metodologias para a determinação da atividade biogênica de bactérias redutoras de sulfato / Development of methodologies for the determination of biogenic activities from sulfater educing bacteria

Juliana Cristina de Queiroz 13 March 2015 (has links)
Comissão Nacional de Energia Nuclear / A corrosão causada por H2S biogênico frequentemente resulta em danos extensos na indústria do petróleo. O presente trabalho avaliou parâmetros de crescimento microbiano e aplicou metodologias de determinação de sulfetos por técnicas espectrofotométrica na região da luz visível e radiorespirométrica para avaliação da atividade metabólica, correlacionando com a população de bactérias redutoras de sulfato, determinada através da técnica do Número Mais Provável (NMP). Amostras de água de formação e consórcio de BRS foram avaliadas através do arraste de sulfetos estáveis produzidos biogenicamente e quantificados por espectrofotometria. O cálculo das velocidades instantâneas e específicas de produção de sulfetos permitiu avaliar de que maneira alguns parâmetros de crescimento microbiano podem afetar o metabolismo das BRS. A detecção de concentrações traço de sulfetos biogênicos pode ser realizada através de ensaios radiorespirométricos. Para isto, diluições em série de água do mar sintética com três amostras distintas foram avaliadas. Os testes realizados indicam que o acréscimo do tempo de incubação de cultura microbiana anaeróbia mista contribuiu para o aumento das capacidades de redução de sulfato, assim como o aumento das fontes de carbono. Ambas as técnicas provaram ser um rápido teste para a detecção de sulfetos biogênicos, particularmente aqueles associados aos produtos de corrosão, sendo uma ferramenta muito útil para monitoração e controle de tanques de armazenamento de água e óleo, plataformas continentais de petróleo e diversos tipos de reservatórios. O presente trabalho prevê a continuidade dos experimentos, através de avaliação de um maior universo de amostras da indústria do petróleo e medições menos espaçadas da técnica espectrofotométrica, além da avaliação radiorespirométrica em modo contínuo, evitando os efeitos inibitórios do H2S / Corrosion caused by biogenic H2S often results in extensive damage, being one of the main problems of petroleum industry. The objective of the present work was to evaluate microbial growth parameters and apply methodologies for sulfide detection by spectrometric at visible light and radiorespirometric techniques for estimate the metabolic activity, correlating with population of Sulfate Reducing Bacteria, through the More Probable Number (MPN) technique. Samples of formation water and SBR consortium were evaluated through drag of stable sulfides biogenically produced and quantified by spectrometry. The calculations of instant and specific rates of sulfide production allow evaluating how some microbial growth parameters may affect the SRB metabolism. The detection of trace concentrations of biogenic sulfides, undetectable by spectrometry technique, may be realized by radiorespirometric assays. For this step, serial dilutions of synthetic seawater with three distinct samples were evaluated. The realized test indicates that increasing the time of incubation of a mixed anaerobic microbial culture contributed to an increase in the capabilities of sulfate reduction, as well as the amount of carbon source. Both techniques proved to be a rapid test for the detection of biogenic sulfides, particularly those associated to corrosion products, being an useful tool for monitoring and controlling oil/water storage tanks, petroleum continental platforms and several types of reservoirs. The present work provides the continuous of the experiments, using a bigger universe of samples of petroleum industry and less spaced measuring of spectrometric technique, further the radiorespirometric evaluation in continuous mode, avoiding the H2S inhibitory effects

Page generated in 0.094 seconds