1 |
Kinetic and spectroscopic characterization of members of the sulfite oxidase family of mononuclear molybdenum enzymesHood, Brian L., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xvi, 176 p.; also includes graphics (some col.). Includes abstract and vita. Advisor:, Dept. of Biochemistry. Includes bibliographical references (p. 168-176).
|
2 |
Kinetic and spectroscopic characterization of members of the sulfite oxidase family of mononuclear molybdenum enzymesHood, Brian L. January 2003 (has links)
No description available.
|
3 |
Structure-Function Studies in Sulfite Oxidase with Altered Active SitesQiu, James January 2009 (has links)
<p>Sulfite oxidase, a metabolically important enzyme, catalyzes the physiologically critical conversion of sulfite to sulfate in the terminal step of the degradation of sulfur containing compounds. The enzyme has been the focus for much research since its discovery in the 1950's. A central question to understanding the mechanism of molybdoenzymes such as sulfite oxidase and nitrate reductase concerns the roles of active site residues and the coordination chemistry of the Mo atom in the structure and function of the enzyme. The goal of this work was directed towards the characterization and determination of the structures of active site variants of sulfite oxidase using a spectroscopic, kinetic, and protein crystallographic approach.</p><p>Earlier studies have identified a single, highly conserved cysteine residue as the donor of a covalent bond from the protein to molybdenum in sulfite oxidase and nitrate reductase. The C185S and C185A variants of chicken sulfite oxidase exhibited severely attenuated activity. Crystallographic and spectroscopic analysis of both variants revealed a change in the metal coordination, from a dioxo to a trioxo form of Mo. </p><p>Assimilatory nitrate reductase is a member of the sulfite oxidase family of molybdopterin enzymes. The crystal structure of the Mo domain of the enzyme from Pichia angusta revealed high structural homology in the active sites of nitrate reductase and sulfite oxidase. Both enzymes utilize the same form of the molybdenum cofactor and have three out of five residues conserved at the active site. Substitution of two active site residues in sulfite oxidase alters the substrate affinity of chicken SO from sulfite to nitrate, resulting in an increase of nitrate reductase activity over wild-type sulfite oxidase. Additionally we identified an additional amino acid position in sulfite oxidase that corresponds to a non-conserved position in NR that further increased NR activity. Finally, these nitrate reductase variants of sulfite oxidase were crystallized and the structures solved. This represents the first example of the transmutation of a molybdenum enzyme to change activity and substrate affinity to those of a homologous enzyme.</p> / Dissertation
|
4 |
Biocatalysis on nanostructured surfaces : investigation and application of redox proteins using spectro-electrochemical methodsFrasca, Stefano January 2012 (has links)
In this thesis, different aspects within the research field of protein spectro- and electro-chemistry on nanostructured materials are addressed. On the one hand, this work is related to the investigation of nanostructured transparent and conductive metal oxides as platform for the immobilization of electroactive enzymes. On the other hand the second part of this work is related to the immobilization of sulfite oxidase on gold nanoparticles modified electrode. Finally direct and mediated spectroelectrochemistry protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and its high homologues the mouse aldehyde oxidase homolog 1.
Stable immobilization and reversible electrochemistry of cytochrome c in a transparent and conductive tin-doped and tin-rich indium oxide film with a well-defined mesoporosity is reported. The transparency and good conductivity, in combination with the large surface area of these materials, allow the incorporation of a high amount of electroactive biomolecules (between 250 and 2500 pmol cm-2) and their electrochemical and spectroscopic investigation. Both, the electrochemical behavior and the immobilization of proteins are influenced by the geometric parameters of the porous material, such as the structure and pore shape, the surface chemistry, as well as the protein size and charge. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of cytochrome c immobilized in the mesoporous indium tin oxide and reveal no perturbation of the structural integrity of the redox protein. A long term protein immobilization is reached using these unmodified mesoporous indium oxide based materials, i.e. more than two weeks even at high ionic strength.
The potential of this modified material as an amperometric biosensor for the detection of superoxide anions is demonstrated. A sensitivity of about 100 A M-1 m-2, in a linear measuring range of the superoxide concentration between 0.13 and 0.67 μM, is estimated.
In addition an electrochemical switchable protein-based optical device is designed with the core part composed of cytochrome c immobilized on a mesoporous indium tin oxide film. A color developing redox sensitive dye is used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemical reset the system to the initial state and repetitive signal generation.
The case of negative charged proteins, which does not have a good interaction with the negative charged indium oxide based films, is also explored. The modification of an indium tin oxide film with a positive charged polymer and the employment of a antimony doped tin oxide film were investigated in this work in order to overcome the repulsion induced by similar charges of the protein and electrode. Human sulfite oxidase and its separated heme-containing domain are able to direct exchange electrons with the supporting material.
A study of a new approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase immobilized on a gold nanoparticles modified electrode is reported. The spherical gold nanoparticles were prepared via a novel method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquid resulting in particles of about 10 nm in hydrodynamic diameter.
These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode and act as platform where human sulfite oxidase is adsorbed. An enhanced interfacial electron transfer and electrocatalysis is therefore achieved. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, were employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s and a linear detection range between 0.5 and 5.4 μM with high sensitivity (1.85 nA μM-1). The investigated system provides remarkable advantages, since it works at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples.
Finally protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and the mouse aldehyde oxidase homolog 1 were spectroelectrochemically studied. It could be demonstrated that different cofactors present in the protein structure, like the FAD and the molybdenum cofactor, are able
to directly exchange electrons with an electrode and are displayed as a single peak in a square wave voltammogram. Protein mutants bearing a serine substituted to the cysteines, bounding to the most exposed iron sulfur cluster additionally showed direct electron transfer which can be attributable to this cluster. On the other hand a mediated spectroelectrochemical titration of the protein bound FAD cofactor was performed in presence of transparent iron and cobalt complex mediators. The results showed the formation of the stable semiquinone and the fully reduced flavin. Two formal potentials for each single electron exchange step were then determined. / In dieser Arbeit werden verschiedenen Aspekte im Forschungsfeld der Protein-Spekro- und Elektro-Chemie an nanostrukturierte Materialien behandelt. Zum einen werden in dieser Arbeit nanostrukturierte, transparente und leitfähige Metalloxide als Basis für die Immobilisierung von elektroaktiven Enzym untersucht.
Des Weiteren behandelt diese Arbeit die Immobilisierung von humaner Sulfitoxidase auf einer Gold-Nanopartikel-modifizierten Elektrode. Schließlich wird die direkte und die vermittelte Elektrochemie von Xanthindehydrogenase aus Rhodobacter capsulatus und Aldehydoxidase Homolog 1, aus Mause, vorgestellt.
Im ersten Teil der Arbeit wird über die stabile Immobilisierung und reversible Elektrochemie von Cytochrom c in einem transparenten und leitfähigen Zinn-dotierten und Zinn-reichen Indiumoxid Film mit einer gut definierten Mesoporosität berichtet. Die Transparenz und gute Leitfähigkeit in Kombination mit der großen Oberfläche dieser Materialien erlauben die Inkorporation einer große Menge elektroaktiver Biomoleküle (zwischen 250 und 2500 pmol cm-2) und deren elektrochemische und spektroskopische Untersuchung. Das elektrochemische Verhalten und die Proteinimmobilisierung sind durch die geometrischen Parameter des porösen Materials, wie die Struktur und Porenform, die Oberflächenchemie, sowie die Größe und Ladung des Proteins beeinflusst. UV-Vis und Resonanz-Raman-Spektroskopie in Kombination mit direkter Protein-Voltammetrie werden für die Charakterisierung von Cytochrom c eingesetzt und zeigen keine Störung der strukturellen Integrität des Redox-Proteins durch die Immobilisierung. Eine langfristige Immobilisierung des Proteins von mehr als zwei Wochen auch bei hoher Ionenstärke wurde unter Verwendung dieser unmodifizierten mesoporösen Indiumoxid-basierten Materialien erreicht.
Das Potential dieses modifizierten Materials für die Verwendung in einem amperometrischen Biosensor zum Nachweis von Superoxid-Anionen wurde aufgezeigt. Es wurde eine Empfindlichkeit von etwa 100 A M-1 m-2, in einem linearen Messbereich der Superoxidkonzentration zwischen 0,13 und 0,67 µM, erreicht.
Außerdem wurde ein elektrochemisch umschaltbares Protein-basiertes optisches Gerät konzipiert mit Cytochrom c und der mesoporösen Indiumzinnoxidschicht. Ein redox-sensitiver Farbstoff wurde als schaltbare Komponente des Systems verwendet. Die Cytochrom c Oxidation des Farbstoffs durch Wasserstoffperoxid wurde spektroskopisch untersucht. Der Redox-Zustand des Farbstoffs, co-immobilisiert mit dem Protein, ist leicht durch das Anlegen eines elektrischen Potentials an das Trägermaterial kontrollierbar. Dadurch wird die elektrochemische Zurücksetzung des Systems auf den Anfangszustand und eine repetitive Signalerzeugung ermöglicht.
Für negativ geladene Proteine, die keine gute Interaktion mit dem negativ geladenen Indiumoxid-basierten Film zeigen wurden die Modifikation der Indiumzinnoxidschicht mit einem positiv geladenen Polymer sowie die Verwendung eines Antimon-dotierten Zinnoxid Films vorgeschlagen. Dadurch konnte die Abstoßung induziert durch die ähnliche Ladung des Proteins und der Elektrode überwunden werden. Es gelang für die humane Sulfit-Oxidase und die separate Häm-haltige Domäne der Austausch von Elektronen mit dem Trägermaterial.
Im zweiten Teil der Arbeit wird über eine neue Methode für die Biosensorik von Sulfit berichtet, bei der direkte Elektronentransfer von humaner Sulfitoxidase immobilisierten auf einer mit Gold-Nanopartikeln modifizierten Elektrode verstärkt wurde. Die sphärischen Gold-Nanopartikeln, von etwa 10 nm im Durchmesser, wurden über eine neue Methode durch Reduktion von HAuCl4 mit verzweigtem Polyethylenimin in einer ionischen Flüssigkeit synthetisiert.
Diese Nanopartikel wurden kovalent an eine mit Mercaptoundecansäure modifizierten Gold-Elektrode immobilisiert und dienen als Basis für die Adsorption von Sulfitoxidase adsorbiert wurde. Dadurch wurde ein schneller heterogener Elektronen-Transfer und verbesserte Elektrokatalyse erreicht. Für die Charakterisierung des verwendeten Systems eingesetzt wurden UV-Vis und Resonanz-Raman-Spektroskopie in Kombination mit direkter Protein-Voltammetrie. Es wurde keine Störung der strukturellen Integrität des Redox-Proteins beobachtet. Der vorgeschlagene Biosensor zeigte eine schnelle steady-state Stromantwort innerhalb von 2 s, eine lineare Detektion im Bereich zwischen 0,5 und 5,4 µM Sulfit mit einer hohen Empfindlichkeit (1,85 nA µM-1). Das untersuchte System bietet bemerkenswerte Vorteile da es ermöglicht bei niedriger angelegter Spannung und bei sehr hoher Ionenstärke zu arbeiten. Aufgrund dieser Eigenschaften hat das vorgeschlagene System großes Potential für die Entwicklung von bioelektronischen Geräten und der Anwendung in realen Proben.
Schließlich werden im letzten Teil der Arbeit die komplexeren Enzymen Xanthindehydrogenase aus Rhodobacter capsulatus und Maus Aldehydoxidase Homolog 1 spektro- und elektrochemisch untersucht. Es konnte gezeigt werden, dass verschiedene Kofaktoren in der Proteinstruktur, wie FAD und der Molybdän Kofaktor direkt Elektronen mit einer Elektrode austauschen können, was durch einzelne Peaks im Square Wave Voltammogramm angezeigt wird. Es konnte eine zusätzliche redoxaktive Gruppe mit direktem Elektronen-Transfer nach Austausch eines Cysteins durch Serin am exponierten Eisen-Schwefel-Cluster gezeigt werden. Außerdem wurde eine vermittelte spektroelektrochemische Titration des FAD-Kofaktors in Anwesenheit von Mediatoren der Klasse der Eisen und Kobalt-Komplexe durchgeführt. Die Ergebnisse zeigen, dass FAD in R. capsulatus XDH zu einem stabilen Semichinone reduziert werden kann. Es gelang die formalen Potentiale für die zwei einzigen Elektrontransferprozesse zu bestimmen.
|
5 |
Investigação de mecanismos fisiopatológicos de erros inatos do metabolismo do enxofre em cérebro de ratos e fibroblastos humanos e potenciais estratégias terapêuticasGrings, Mateus January 2018 (has links)
O sulfito e o tiossulfato encontram-se acumulados na deficiência da sulfito oxidase (SO), ao passo que o tiossulfato também se acumula na deficiência da proteína da encefalopatia etilmalônica 1 (ETHE1). Os pacientes apresentam principalmente encefalopatia progressiva e convulsões neonatais graves, resultando geralmente em morte prematura. Neste estudo, investigamos os efeitos in vivo do sulfito em estruturas encefálicas de ratos com deficiência da SO, e da administração intraestriatal de sulfito e tiossulfato em ratos normais sobre a homeostase redox e mitocondrial. Também avaliamos alterações nesses parâmetros em fibroblastos de pacientes. Inicialmente, observamos que o sulfito diminuiu os níveis de GSH e as atividades da glutationa redutase (GR) e glutationa S-transferase (GST) no córtex cerebral, e da GST no cerebelo de animais deficientes para a SO. Além disso, o sulfito aumentou as atividades dos complexos II e II-III em estriado e do complexo II no hipocampo, mas diminuiu a atividade do complexo IV no estriado de animais com deficiência da SO. Nesses animais, o sulfito também reduziu o potencial de membrana mitocondrial no córtex cerebral e no estriado, além de diminuir as atividades da malato e glutamato desidrogenase. Já nos animais que receberam injeção intraestriatal de sulfito ou tiossulfato, ambos os compostos diminuíram as atividades da creatina cinase e da citrato sintase, enquanto que o sulfito reduziu a massa mitocondrial. O sulfito ainda diminuiu os níveis de GSH e as atividades da glutationa peroxidase (GPx), GR, GST e glicose-6-fosfato desidrogenase (G6PDH), enquanto que o sulfito e o tiossulfato aumentaram a atividade da catalase. O sulfito também diminui os níveis nucleares de PGC-1α e induziu reatividade glial e dano neuronal. As alterações causadas pelo sulfito foram prevenidas pelo tratamento com bezafibrato. Por fim, nos estudos realizados em fibroblastos, utilizamos células de quatro pacientes com deficiência da ETHE1 e de um paciente com deficiência da SO. Observamos diminuição da respiração mitocondrial em todos os tipos celulares, e diminuição de ATP em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Também verificamos alterações variáveis no conteúdo de proteínas de dinâmica mitocondrial, e uma diminuição do conteúdo de proteínas envolvidas na comunicação entre retículo endoplasmático (RE) e mitocôndria. Um aumento nos níveis de DDIT3, marcadora de estresse de RE, na produção de superóxido e apoptose também foram verificados em todos os tipos celulares. O tratamento com JP4-039, um antioxidante mitocondrial, diminuiu os níveis de superóxido em todas as linhagens celulares e aumentou a respiração mitocondrial em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Os achados deste trabalho evidenciam que alterações na homeostase energética e redox, na biogênese e dinâmica mitocondrial, bem como na comunicação entre mitocôndria e RE são mecanismos patológicos envolvidos nas deficiências da SO e da ETHE1. Além disso, visto que o bezafibrato e o JP4-039 exerceram efeitos protetores nos diferentes modelos, pode ser sugerido que esses compostos são promissores para o desenvolvimento de novas estratégias terapêuticas para as deficiências da SO e da ETHE1. / Sulfite and thiosulfate are accumulated in tissues of patients affected by sulfite oxidase (SO) deficiency, whereas thiosulfate also accumulates in the deficiency of ethylmalonic encephalopathy protein 1 (ETHE1). Patients present progressive encephalopathy and severe neonatal seizures, often resulting in early childhood death. In this study, we investigated the effects of sulfite in encephalic structures of SO-deficient rats, and of an intrastriatal injection of sulfite or thiosulfate in normal rats on redox and mitochondrial homeostasis. We also investigated possible alterations in these parameters in fibroblasts of patients. Initially, we observed that sulfite decreased reduced glutathione (GSH) levels and the activities of glutathione reductase (GR) and glutathione S-transferase (GST) in cerebral cortex, and of GST in cerebellum of SO deficient rats. Moreover, sulfite increased the activities of the respiratory chain complexes II and II-III in striatum and of complex II in hippocampus, whereas complex IV activity was decreased in striatum of SO deficient animals. In these animals, sulfite also reduced mitochondrial membrane potential in the cerebral cortex and in the striatum, as well as inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex. Regarding the rats that received sulfite or thiosulfate via intrastriatal injection, both compounds reduced creatine kinase and citrate synthase activities, while sulfite decreased mitochondrial mass. Sulfite also decreased GSH levels and the activities of glutathione peroxidase (GPx), GR, GST, glucose-6-phosphate dehydrogenase (G6PDH), whereas both sulfite and thiosulfate increased catalase activity. In addition, sulfite decreased PGC-1α nuclear levels and induced glial reactivity and neuronal damage. Bezafibrate prevented the alterations induced by sulfite in striatum. Finally, in the experiments with fibroblasts, we used four cell lines with ETHE1 deficiency and one cell line with SO deficiency. We observed a decrease in basal and maximal respiration in all cell lines, and ATP depletion in two ETHE1 deficient cell lines and in the SO deficient fibroblasts. We also verified variable alterations in the content of proteins involved in mitochondrial dynamics, and a decrease in the content of proteins involved in endoplasmic reticulum (ER)-mitochondria communication. Increased content of DDIT3, an ER stress marker, as well as high levels of superoxide and apoptosis induction were further seen in all cell lines. Treatment with the mitochondria-targeted free radical scavenger JP4-039 decreased superoxide levels in all cells lines and increased basal and maximal respiration in two ETHE1 deficient cell lines and in the SO deficient cells. Our findings provide evidence that alterations in energy and redox homeostasis, mitochondrial biogenesis and dynamics, as well as in the communication between mitochondria and ER are pathological mechanisms involved in the SO and ETHE1 deficiencies. Furthermore, since bezafibrate and JP4-039 exerted protective effects, it may be suggested that these compounds are attractive agents for the development of new therapeutic strategies aiming to improve the prognosis of patients affected by SO and ETHE1 deficiency.
|
6 |
Investigação de mecanismos fisiopatológicos de erros inatos do metabolismo do enxofre em cérebro de ratos e fibroblastos humanos e potenciais estratégias terapêuticasGrings, Mateus January 2018 (has links)
O sulfito e o tiossulfato encontram-se acumulados na deficiência da sulfito oxidase (SO), ao passo que o tiossulfato também se acumula na deficiência da proteína da encefalopatia etilmalônica 1 (ETHE1). Os pacientes apresentam principalmente encefalopatia progressiva e convulsões neonatais graves, resultando geralmente em morte prematura. Neste estudo, investigamos os efeitos in vivo do sulfito em estruturas encefálicas de ratos com deficiência da SO, e da administração intraestriatal de sulfito e tiossulfato em ratos normais sobre a homeostase redox e mitocondrial. Também avaliamos alterações nesses parâmetros em fibroblastos de pacientes. Inicialmente, observamos que o sulfito diminuiu os níveis de GSH e as atividades da glutationa redutase (GR) e glutationa S-transferase (GST) no córtex cerebral, e da GST no cerebelo de animais deficientes para a SO. Além disso, o sulfito aumentou as atividades dos complexos II e II-III em estriado e do complexo II no hipocampo, mas diminuiu a atividade do complexo IV no estriado de animais com deficiência da SO. Nesses animais, o sulfito também reduziu o potencial de membrana mitocondrial no córtex cerebral e no estriado, além de diminuir as atividades da malato e glutamato desidrogenase. Já nos animais que receberam injeção intraestriatal de sulfito ou tiossulfato, ambos os compostos diminuíram as atividades da creatina cinase e da citrato sintase, enquanto que o sulfito reduziu a massa mitocondrial. O sulfito ainda diminuiu os níveis de GSH e as atividades da glutationa peroxidase (GPx), GR, GST e glicose-6-fosfato desidrogenase (G6PDH), enquanto que o sulfito e o tiossulfato aumentaram a atividade da catalase. O sulfito também diminui os níveis nucleares de PGC-1α e induziu reatividade glial e dano neuronal. As alterações causadas pelo sulfito foram prevenidas pelo tratamento com bezafibrato. Por fim, nos estudos realizados em fibroblastos, utilizamos células de quatro pacientes com deficiência da ETHE1 e de um paciente com deficiência da SO. Observamos diminuição da respiração mitocondrial em todos os tipos celulares, e diminuição de ATP em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Também verificamos alterações variáveis no conteúdo de proteínas de dinâmica mitocondrial, e uma diminuição do conteúdo de proteínas envolvidas na comunicação entre retículo endoplasmático (RE) e mitocôndria. Um aumento nos níveis de DDIT3, marcadora de estresse de RE, na produção de superóxido e apoptose também foram verificados em todos os tipos celulares. O tratamento com JP4-039, um antioxidante mitocondrial, diminuiu os níveis de superóxido em todas as linhagens celulares e aumentou a respiração mitocondrial em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Os achados deste trabalho evidenciam que alterações na homeostase energética e redox, na biogênese e dinâmica mitocondrial, bem como na comunicação entre mitocôndria e RE são mecanismos patológicos envolvidos nas deficiências da SO e da ETHE1. Além disso, visto que o bezafibrato e o JP4-039 exerceram efeitos protetores nos diferentes modelos, pode ser sugerido que esses compostos são promissores para o desenvolvimento de novas estratégias terapêuticas para as deficiências da SO e da ETHE1. / Sulfite and thiosulfate are accumulated in tissues of patients affected by sulfite oxidase (SO) deficiency, whereas thiosulfate also accumulates in the deficiency of ethylmalonic encephalopathy protein 1 (ETHE1). Patients present progressive encephalopathy and severe neonatal seizures, often resulting in early childhood death. In this study, we investigated the effects of sulfite in encephalic structures of SO-deficient rats, and of an intrastriatal injection of sulfite or thiosulfate in normal rats on redox and mitochondrial homeostasis. We also investigated possible alterations in these parameters in fibroblasts of patients. Initially, we observed that sulfite decreased reduced glutathione (GSH) levels and the activities of glutathione reductase (GR) and glutathione S-transferase (GST) in cerebral cortex, and of GST in cerebellum of SO deficient rats. Moreover, sulfite increased the activities of the respiratory chain complexes II and II-III in striatum and of complex II in hippocampus, whereas complex IV activity was decreased in striatum of SO deficient animals. In these animals, sulfite also reduced mitochondrial membrane potential in the cerebral cortex and in the striatum, as well as inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex. Regarding the rats that received sulfite or thiosulfate via intrastriatal injection, both compounds reduced creatine kinase and citrate synthase activities, while sulfite decreased mitochondrial mass. Sulfite also decreased GSH levels and the activities of glutathione peroxidase (GPx), GR, GST, glucose-6-phosphate dehydrogenase (G6PDH), whereas both sulfite and thiosulfate increased catalase activity. In addition, sulfite decreased PGC-1α nuclear levels and induced glial reactivity and neuronal damage. Bezafibrate prevented the alterations induced by sulfite in striatum. Finally, in the experiments with fibroblasts, we used four cell lines with ETHE1 deficiency and one cell line with SO deficiency. We observed a decrease in basal and maximal respiration in all cell lines, and ATP depletion in two ETHE1 deficient cell lines and in the SO deficient fibroblasts. We also verified variable alterations in the content of proteins involved in mitochondrial dynamics, and a decrease in the content of proteins involved in endoplasmic reticulum (ER)-mitochondria communication. Increased content of DDIT3, an ER stress marker, as well as high levels of superoxide and apoptosis induction were further seen in all cell lines. Treatment with the mitochondria-targeted free radical scavenger JP4-039 decreased superoxide levels in all cells lines and increased basal and maximal respiration in two ETHE1 deficient cell lines and in the SO deficient cells. Our findings provide evidence that alterations in energy and redox homeostasis, mitochondrial biogenesis and dynamics, as well as in the communication between mitochondria and ER are pathological mechanisms involved in the SO and ETHE1 deficiencies. Furthermore, since bezafibrate and JP4-039 exerted protective effects, it may be suggested that these compounds are attractive agents for the development of new therapeutic strategies aiming to improve the prognosis of patients affected by SO and ETHE1 deficiency.
|
7 |
Investigação de mecanismos fisiopatológicos de erros inatos do metabolismo do enxofre em cérebro de ratos e fibroblastos humanos e potenciais estratégias terapêuticasGrings, Mateus January 2018 (has links)
O sulfito e o tiossulfato encontram-se acumulados na deficiência da sulfito oxidase (SO), ao passo que o tiossulfato também se acumula na deficiência da proteína da encefalopatia etilmalônica 1 (ETHE1). Os pacientes apresentam principalmente encefalopatia progressiva e convulsões neonatais graves, resultando geralmente em morte prematura. Neste estudo, investigamos os efeitos in vivo do sulfito em estruturas encefálicas de ratos com deficiência da SO, e da administração intraestriatal de sulfito e tiossulfato em ratos normais sobre a homeostase redox e mitocondrial. Também avaliamos alterações nesses parâmetros em fibroblastos de pacientes. Inicialmente, observamos que o sulfito diminuiu os níveis de GSH e as atividades da glutationa redutase (GR) e glutationa S-transferase (GST) no córtex cerebral, e da GST no cerebelo de animais deficientes para a SO. Além disso, o sulfito aumentou as atividades dos complexos II e II-III em estriado e do complexo II no hipocampo, mas diminuiu a atividade do complexo IV no estriado de animais com deficiência da SO. Nesses animais, o sulfito também reduziu o potencial de membrana mitocondrial no córtex cerebral e no estriado, além de diminuir as atividades da malato e glutamato desidrogenase. Já nos animais que receberam injeção intraestriatal de sulfito ou tiossulfato, ambos os compostos diminuíram as atividades da creatina cinase e da citrato sintase, enquanto que o sulfito reduziu a massa mitocondrial. O sulfito ainda diminuiu os níveis de GSH e as atividades da glutationa peroxidase (GPx), GR, GST e glicose-6-fosfato desidrogenase (G6PDH), enquanto que o sulfito e o tiossulfato aumentaram a atividade da catalase. O sulfito também diminui os níveis nucleares de PGC-1α e induziu reatividade glial e dano neuronal. As alterações causadas pelo sulfito foram prevenidas pelo tratamento com bezafibrato. Por fim, nos estudos realizados em fibroblastos, utilizamos células de quatro pacientes com deficiência da ETHE1 e de um paciente com deficiência da SO. Observamos diminuição da respiração mitocondrial em todos os tipos celulares, e diminuição de ATP em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Também verificamos alterações variáveis no conteúdo de proteínas de dinâmica mitocondrial, e uma diminuição do conteúdo de proteínas envolvidas na comunicação entre retículo endoplasmático (RE) e mitocôndria. Um aumento nos níveis de DDIT3, marcadora de estresse de RE, na produção de superóxido e apoptose também foram verificados em todos os tipos celulares. O tratamento com JP4-039, um antioxidante mitocondrial, diminuiu os níveis de superóxido em todas as linhagens celulares e aumentou a respiração mitocondrial em duas linhagens com deficiência da ETHE1 e na linhagem com deficiência da SO. Os achados deste trabalho evidenciam que alterações na homeostase energética e redox, na biogênese e dinâmica mitocondrial, bem como na comunicação entre mitocôndria e RE são mecanismos patológicos envolvidos nas deficiências da SO e da ETHE1. Além disso, visto que o bezafibrato e o JP4-039 exerceram efeitos protetores nos diferentes modelos, pode ser sugerido que esses compostos são promissores para o desenvolvimento de novas estratégias terapêuticas para as deficiências da SO e da ETHE1. / Sulfite and thiosulfate are accumulated in tissues of patients affected by sulfite oxidase (SO) deficiency, whereas thiosulfate also accumulates in the deficiency of ethylmalonic encephalopathy protein 1 (ETHE1). Patients present progressive encephalopathy and severe neonatal seizures, often resulting in early childhood death. In this study, we investigated the effects of sulfite in encephalic structures of SO-deficient rats, and of an intrastriatal injection of sulfite or thiosulfate in normal rats on redox and mitochondrial homeostasis. We also investigated possible alterations in these parameters in fibroblasts of patients. Initially, we observed that sulfite decreased reduced glutathione (GSH) levels and the activities of glutathione reductase (GR) and glutathione S-transferase (GST) in cerebral cortex, and of GST in cerebellum of SO deficient rats. Moreover, sulfite increased the activities of the respiratory chain complexes II and II-III in striatum and of complex II in hippocampus, whereas complex IV activity was decreased in striatum of SO deficient animals. In these animals, sulfite also reduced mitochondrial membrane potential in the cerebral cortex and in the striatum, as well as inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex. Regarding the rats that received sulfite or thiosulfate via intrastriatal injection, both compounds reduced creatine kinase and citrate synthase activities, while sulfite decreased mitochondrial mass. Sulfite also decreased GSH levels and the activities of glutathione peroxidase (GPx), GR, GST, glucose-6-phosphate dehydrogenase (G6PDH), whereas both sulfite and thiosulfate increased catalase activity. In addition, sulfite decreased PGC-1α nuclear levels and induced glial reactivity and neuronal damage. Bezafibrate prevented the alterations induced by sulfite in striatum. Finally, in the experiments with fibroblasts, we used four cell lines with ETHE1 deficiency and one cell line with SO deficiency. We observed a decrease in basal and maximal respiration in all cell lines, and ATP depletion in two ETHE1 deficient cell lines and in the SO deficient fibroblasts. We also verified variable alterations in the content of proteins involved in mitochondrial dynamics, and a decrease in the content of proteins involved in endoplasmic reticulum (ER)-mitochondria communication. Increased content of DDIT3, an ER stress marker, as well as high levels of superoxide and apoptosis induction were further seen in all cell lines. Treatment with the mitochondria-targeted free radical scavenger JP4-039 decreased superoxide levels in all cells lines and increased basal and maximal respiration in two ETHE1 deficient cell lines and in the SO deficient cells. Our findings provide evidence that alterations in energy and redox homeostasis, mitochondrial biogenesis and dynamics, as well as in the communication between mitochondria and ER are pathological mechanisms involved in the SO and ETHE1 deficiencies. Furthermore, since bezafibrate and JP4-039 exerted protective effects, it may be suggested that these compounds are attractive agents for the development of new therapeutic strategies aiming to improve the prognosis of patients affected by SO and ETHE1 deficiency.
|
8 |
Performance-oriented strategies for integration and wiring of the photosystem I inside 2D and 3D architectures and coupling photocatalysis with enzymatic catalysisCiornii, Dmitri 02 September 2020 (has links)
In der vorliegenden Arbeit sind unterschiedliche Kopplungsstrategien des natürlichen Photosystems I (PSI) aus Cyanobakterium Thermosynechococcus elongatus mit verschiedenen Elektrodenoberflächen sowie Interaktion mit Nanomaterialien und Enzymen bearbeitet worden. Zum einen wurde gezeigt, dass die Immobilisierung des PSI auf modifizierten mehr-wandigen Kohlenstoffnanoröhrchen zur funktionalen Photobiohybridelektrode führt. Dabei wurde das PSI mit der Elektrode elektrisch mit Hilfe eines Redoxproteins, Cytochrom c (cyt c), verknüpft. Das System (PSI-cyt c) wurde auch auf eine dreidimensionale Elektrodenoberfläche des Metaloxids Indiumzinnoxid (eng. ITO) übertragen. Hierbei wurde zusätzlich die TransparenzEigenschaft solcher Oberflächen ausgenutzt. Die Präparation solcher transparenter Elektroden wurde optimiert, um höhere Photoströme zu generieren. Weiterhin wurde eine neue Methode der elektrischen Kontaktierung des PSI mit der Elektrode etabliert. Hierfür wurden Fullerene eingesetzt. Durch erhöhte molekulare Effizienz wurde gezeigt, dass Fullerene effektivere Elektronvermittler zwischen PSI und der Elektrode sind als das cyt c. Zusätzlich wurden im Rahmen dieser Doktorarbeit die photokatalytischen Eigenschaften von PSI mit den biokatalytischen Eigenschaften des Enzyms humane Sulphit Oxidase (hSOx) kombiniert. Hierbei wurde das Enzym als ein alternativer und effizienter Elektronzulieferer für PSI eingesetzt. Ein drittes Protein, das cyt c, fungierte als elektrisches Bindeglied und sicherte die elektrische Kommunikation zwischen den katalytischen Proteinen im System und der Elektrode. Die Komplexität des PSI sowie seine Kommunikation mit anorganischen Nanomaterialien und anderen komplexen Biomolekülen, wie z.B. Enzymen, zeigt ein großes Potential des Einsatzes von PSI-basierter Biohybriden in den Biotechnologien der Zukunft. / In this thesis, different strategies for coupling of the natural complex photosystem I from the cyanobacterium Thermosynechococcus elongatus with different electrode surfaces, and the interaction of PSI with nanomaterials and enzymes has been investigated. First, it was shown that immobilization of PSI on modified multi-walled carbon nanotubes (MWNT) leads to a functional photobiohybrid electrode. Here, PSI has been electrically wired to the electrode via a redox-active protein, cytochrome c (cyt c). The system (PSI-cyt c) has been scaled up to the three-dimensional surface of a metal-oxide, indium tin oxide (ITO). Here, additionally the high transparency property of this material has been exploited. The new preparation procedure of such transparent electrodes has been optimized in order to achieve high pohotocurrents. Furthermore, a new method of electric wiring of the PSI with the electrode has been established. Here, fullerenes have been employed. The high molecular efficiency of such a system proves that fullerenes are more effective wiring agents between the PSI and the electrode as compared to the cyt c. Additionally, in this thesis the photocatalytic property of the PSI has been combined with the biocatalytic property of the enzyme human sulphite oxidase, hSOx. Here, the enzyme has been employed as an alternative electron supplier for PSI. The third protein, cyt c, acted as an electric wiring agent and ensured electric communication between both catalytic proteins of the system and the electrode. The versatility of the PSI as well as its communication with anorganic nanomaterials and biological molecules, e.g. such as enzymes, shows a great potential for use of PSI-based biohybrids in the future biotechnological applications.
|
Page generated in 0.0565 seconds