• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 77
  • 37
  • 36
  • 34
  • 15
  • 15
  • 15
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and Characterization of Hydrophilic-Hydrophobic Poly (Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

Nebipasagil, Ali 26 January 2015 (has links)
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamide-terminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDEL® foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and α-ω-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivities of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and α,ω-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology. / Ph. D.
22

Dessulfurização oxidativa do dibenzotiofeno catalisada por V2O5 suportado / Oxidative desulfurization of dibenzothiophene catalyzed by supported V2O5

Débora Gomes Baptista Dionizio 16 September 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A necessidade de redução da emissão de poluentes, visando diminuir os sérios problemas de poluição atmosférica enfrentados atualmente, é hoje uma das principais preocupações mundiais, provocando o surgimento de leis mais rígidas, que restringem o teor de enxofre na gasolina e no diesel. Assim, o desenvolvimento de tecnologias mais eficazes na remoção de enxofre nestes combustíveis tem recebido atenção crescente. Estas tecnologias incluem a extração física com solvente, a adsorção seletiva, processos de redução/oxidação microbiológicos e a dessulfurização oxidativa (ODS). A dessulfurização oxidativa converte os compostos de enxofre em sulfonas que podem ser facilmente separadas por processos físicos. Portanto, a ODS apresenta grande potencial para tornar-se um processo complementar a processo de hidrodessulfurização tradicional na produção de combustíveis altamente dessulfurizados. Neste contexto, este trabalho visou o estudo do desempenho de catalisadores de V2O5 suportados em alumina, sílica e sílica-alumina frente à reação de ODS do dibenzotiofeno em presença do peróxido de hidrogênio, como oxidante, e da acetonitrila, como solvente polar aprótico. Os catalisadores foram preparados por impregnação ao ponto úmido e caracterizados por difração de raios-X (DRX), análise textural, redução à temperatura programada (TPR-H2), dessorção de amônia à temperatura programa (TPD-NH3) e espectroscopia Raman. O efeito de parâmetros reacionais como quantidade de solvente, relação O/S e concentração de catalisador foram investigados, utilizando a alumina como suporte, visando estabelecer as condições reacionais que levassem a maiores valores de conversão do dibenzotiofeno (DBT). Uma vez estabelecidas estas condições, foi analisado o efeito do teor de V2O5 presente no catalisador e, posteriormente, o efeito do suporte catalítico. Os resultados obtidos mostraram a 70 C razão molar H2O2/Sde 16,6, razão carga/solvente igual a 1:1 e 100 mg do catalisador 15 % V2O5/SiO2, a conversão obtida foi de 95% / The need to reduce the gaseous emissions which causes serious environmental problems is a worldwide concern nowadays. Therefore, stricter laws aiming at to reduce the sulfur content in gasoline and diesel are being adopted in different countries, among them Brazil. Thus, the development of more efficient technologies to remove sulfur in these fuels has received increasing attention. These technologies include the physical extraction with a solvent, selective adsorption, microbiological reduction/oxidation processes and oxidative desulphurization (ODS). The oxidative desulfurization (ODS) converts sulfur compounds into sulfones that can be easily separated by physical processes. Therefore, the ODS has a great potential to become a process complementary to traditional hydrodesulfurization in the production of highly desulfurized fuels. In this context, this work studied the performance of V2O5 catalysts supported on alumina, silica and silica-alumina toward ODS reaction of dibenzothiophene in the presence of hydrogen peroxide as the oxidant, and acetonitrile as polar aprotic solvent. The catalysts were prepared by incipient wetness impregnation and characterized by X-ray diffraction (XRD), textural analysis, temperature programmed reduction (TPR-H2), temperature programmed desorption (TPD-NH3) and Raman spectroscopy. The effect of experimental parameters such as amount of solvent, O/S ratio and catalyst concentration were investigated, using alumina as a support, aiming at establishing the conditions that could lead to the higher conversion of dibenzothiophene (DBT). Once established these conditions, the effect of V2O5 content was investigated and then the effect of catalytic support. The results showed that at 70 C, H2O2/S molar ratio of 16.6, solvent/diesel ratio equal to 1: 1 and 100 mg of 15% V2O5/SiO2 catalyst, the conversion obtained was 95%
23

Rhodium-catalyzed Addition of Arylboronic Acids to Nitriles: Application in the Synthesis of Unsymmetrical Polysubstituted Pyridines

Lau, Chan Tong 13 December 2011 (has links)
Investigations pertaining to the rhodium(I)-catalyzed addition of arylboronic acids to (arylsulfonyl)acetonitriles were undertaken. The resulting carbon-carbon bond forming reaction has led to the efficient synthesis of novel stereoselective (Z)-β-sulfonylvinylamines, which upon acidic hydrolysis, afford useful β-keto sulfones possessing a diverse range of aryl and sulfonyl substituents. The synthetic utility of these (Z)-β-sulfonylvinylamines was subsequently explored by generating the corresponding 1-aza-allyl anion equivalents under basic conditions. This interesting anionic intermediate was then introduced to various α,β-unsaturated systems to produce a diverse array of functionalized pyridine derivatives including unsymmetrical polysubstituted pyridines.
24

Rhodium-catalyzed Addition of Arylboronic Acids to Nitriles: Application in the Synthesis of Unsymmetrical Polysubstituted Pyridines

Lau, Chan Tong 13 December 2011 (has links)
Investigations pertaining to the rhodium(I)-catalyzed addition of arylboronic acids to (arylsulfonyl)acetonitriles were undertaken. The resulting carbon-carbon bond forming reaction has led to the efficient synthesis of novel stereoselective (Z)-β-sulfonylvinylamines, which upon acidic hydrolysis, afford useful β-keto sulfones possessing a diverse range of aryl and sulfonyl substituents. The synthetic utility of these (Z)-β-sulfonylvinylamines was subsequently explored by generating the corresponding 1-aza-allyl anion equivalents under basic conditions. This interesting anionic intermediate was then introduced to various α,β-unsaturated systems to produce a diverse array of functionalized pyridine derivatives including unsymmetrical polysubstituted pyridines.
25

Preparation and Characterization of Poly(aryl ether)s Containing Novel Bisphenol Monomers in Flexible Substrate

Juan, Fan-Shuan 07 July 2011 (has links)
In this research that we design in the polymer structure containing the core monomer into benzene ring structure for appied on the flexible substrate and the optoelectronic components .Three novel bisphenol monomers have been synthesised successfully and converted to a series of poly(arylene ether)s by nucleophilic displacement reaction with Bis(4-fluorophenyl) sulfone, then we called them:P1, P2 and P3.We can see from the material structure that the steric hindrance of the group connected to the side of the main chain (M2) is larger than the group in the main chain(M1,M3),and the steric hindrance of the longer length of main chain (M3) is smaller than the shorter one(M1) in the polymerization Thermal analysis physics studies with these polymers confirmed by Thermogravimetric analyzer(TGA) and differential scanning calorimetry (DSC).It is indicated that Td5% of these polymers were 476¢XC~577¢XC in TGA and Tg of these polymers were 264¢XC~290¢XC in DSC. Besides, these polymers were not observed apparent crystallizing point, so we consider that they are not crystallized easily. The transmission spectra of thin film in the visible light region were up to 87%~93%. In drop shape analysis system, the contact angles of them are 85¢X~87¢X, show that they have good hyrophobicity.By above material properties of these polymers, they have high thermal stabilities, high optical transparency and good hydrophobicity.
26

The application of green chemistry and engineering to novel sustainable solvents and processes

Marus, Gregory Alan 21 December 2011 (has links)
The implementation of sustainable solvents and processes is critical to new developments in reducing environmental impact, improving net efficiency, and securing economic profitability in the chemical and pharmaceutical industries. In order to address the challenge of sustainability, researchers have used switchable solvents for both reaction and separation by utilizing a built-in switch to undergo a step change in chemical and physical properties. This allows us to facilitate reactions in the solvent then activate the switch to enable separation and facile product recovery. Subsequently, we can recover the solvent for reuse and avoid energy- or waste-intensive separation processes; thus we are developing and using these switchable solvents as sustainable and environmentally benign alternatives to traditional processes. In this research, we enable the sustainable scale-up of a switchable solvent - piperylene sulfone - a "volatile" and recyclable DMSO replacement. In the development of this process, we improved the reaction performances and developed a green purification method. Furthermore, we enable and demonstrate the implementation of a Meerwein-Ponndorf-Verley (MPV) reduction, a pharmaceutically relevant reaction, into a continuous flow platform. The innovation of continuous flow processes can replace traditional batch reaction technology, and is indeed a key research area that has been acknowledged by the pharmaceutical industry. Additionally, we utilize the switchable sulfone solvents, piperylene and butadiene sulfone, for reaction and separation of HMF produced from monosaccharides as an alternative to a process which has been limited by an inefficient separation step.
27

Pd-katalysierte asymmetrische Synthese allylischer Sulfone und Stereochemie der Lithiumsalze chiraler allylischer a-tert-Butylsulfonyl-Carbanionen

Gerhards, Frank. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
28

Nucleophile Substitutionen an Chlorpyrimidincarbonsäurederivaten

Blyumin, Yevgen. Unknown Date (has links)
Techn. Universiẗat, Diss., 2004--Darmstadt.
29

Dessulfurização oxidativa do dibenzotiofeno catalisada por V2O5 suportado / Oxidative desulfurization of dibenzothiophene catalyzed by supported V2O5

Débora Gomes Baptista Dionizio 16 September 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A necessidade de redução da emissão de poluentes, visando diminuir os sérios problemas de poluição atmosférica enfrentados atualmente, é hoje uma das principais preocupações mundiais, provocando o surgimento de leis mais rígidas, que restringem o teor de enxofre na gasolina e no diesel. Assim, o desenvolvimento de tecnologias mais eficazes na remoção de enxofre nestes combustíveis tem recebido atenção crescente. Estas tecnologias incluem a extração física com solvente, a adsorção seletiva, processos de redução/oxidação microbiológicos e a dessulfurização oxidativa (ODS). A dessulfurização oxidativa converte os compostos de enxofre em sulfonas que podem ser facilmente separadas por processos físicos. Portanto, a ODS apresenta grande potencial para tornar-se um processo complementar a processo de hidrodessulfurização tradicional na produção de combustíveis altamente dessulfurizados. Neste contexto, este trabalho visou o estudo do desempenho de catalisadores de V2O5 suportados em alumina, sílica e sílica-alumina frente à reação de ODS do dibenzotiofeno em presença do peróxido de hidrogênio, como oxidante, e da acetonitrila, como solvente polar aprótico. Os catalisadores foram preparados por impregnação ao ponto úmido e caracterizados por difração de raios-X (DRX), análise textural, redução à temperatura programada (TPR-H2), dessorção de amônia à temperatura programa (TPD-NH3) e espectroscopia Raman. O efeito de parâmetros reacionais como quantidade de solvente, relação O/S e concentração de catalisador foram investigados, utilizando a alumina como suporte, visando estabelecer as condições reacionais que levassem a maiores valores de conversão do dibenzotiofeno (DBT). Uma vez estabelecidas estas condições, foi analisado o efeito do teor de V2O5 presente no catalisador e, posteriormente, o efeito do suporte catalítico. Os resultados obtidos mostraram a 70 C razão molar H2O2/Sde 16,6, razão carga/solvente igual a 1:1 e 100 mg do catalisador 15 % V2O5/SiO2, a conversão obtida foi de 95% / The need to reduce the gaseous emissions which causes serious environmental problems is a worldwide concern nowadays. Therefore, stricter laws aiming at to reduce the sulfur content in gasoline and diesel are being adopted in different countries, among them Brazil. Thus, the development of more efficient technologies to remove sulfur in these fuels has received increasing attention. These technologies include the physical extraction with a solvent, selective adsorption, microbiological reduction/oxidation processes and oxidative desulphurization (ODS). The oxidative desulfurization (ODS) converts sulfur compounds into sulfones that can be easily separated by physical processes. Therefore, the ODS has a great potential to become a process complementary to traditional hydrodesulfurization in the production of highly desulfurized fuels. In this context, this work studied the performance of V2O5 catalysts supported on alumina, silica and silica-alumina toward ODS reaction of dibenzothiophene in the presence of hydrogen peroxide as the oxidant, and acetonitrile as polar aprotic solvent. The catalysts were prepared by incipient wetness impregnation and characterized by X-ray diffraction (XRD), textural analysis, temperature programmed reduction (TPR-H2), temperature programmed desorption (TPD-NH3) and Raman spectroscopy. The effect of experimental parameters such as amount of solvent, O/S ratio and catalyst concentration were investigated, using alumina as a support, aiming at establishing the conditions that could lead to the higher conversion of dibenzothiophene (DBT). Once established these conditions, the effect of V2O5 content was investigated and then the effect of catalytic support. The results showed that at 70 C, H2O2/S molar ratio of 16.6, solvent/diesel ratio equal to 1: 1 and 100 mg of 15% V2O5/SiO2 catalyst, the conversion obtained was 95%
30

Design of oxidation-sensitive polymer micelles for inflammation targeting

Hu, Ping January 2012 (has links)
The research presented in this thesis focuses on the molecular design of an oxidation-sensitive nanocarrier and its enzyme conjugate with a view of their application in the field of biomaterials. I have polarised our attention on a specific class of polymers, the polysulfides, for their environmental responsiveness (towards oxidising substances, a condition often associated with inflammatory reactions), interesting physico-chemical properties, ease of the preparation and multiple possibilities for further modifications and bioconjugations, which are perfectly suitable for the development as systems for drug delivery applications. In this work we firstly have focused on the synthesis of amphiphilic poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) block copolymers by employing vinyl sulfone as the functional group to link the blocks and modify the end of the PEG. This study was followed by an investigation of the macromolecular interchange and payload exchange of the formed polymeric micelles to understand the 'co-formulation' events, employing fluorophores (dansyl groups) and quenchers (dabsyl groups) either as terminal groups in macroamphiphiles or as encapsulated hydrophobic payloads. In another part of the work, I have developed a micellar system with which simultaneously to two of the most important ROS: superoxide and hydrogen peroxide, for inflammation-responsive drug release. The system is composed of superoxide dismutase (SOD) conjugated to oxidation-sensitive amphiphilic polysulfide/PEG block copolymers; the conjugate combines the SOD reactivity towards superoxide with that of hydrophobic thioethers towards hydrogen peroxide. Specifically, here we have demonstrated how this hybrid system can efficiently convert superoxide into hydrogen peroxide, which is then 'mopped-up' by the polysulfides. This mode of operation is functionally analogous to the SOD/catalase combination, with the advantage of being based on a single and more stable system.

Page generated in 0.0558 seconds