• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 19
  • 18
  • 15
  • 9
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 212
  • 56
  • 44
  • 36
  • 32
  • 31
  • 30
  • 27
  • 27
  • 25
  • 22
  • 22
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Development of loss models for a high-temperature superconducting tape

Schönborg, Niclas January 2001 (has links)
In the recent years significant progresses in thedevelopment of high-temperature superconductors have been made.It is realistic to believe that power applications, based onthese conductors, in a few years will become available. To beable to utilise the conductors in an optimum way, theunderstanding of their behaviour under application-likecondition is essential. One important parameter that has to beoptimised is the power loss, which means that mathematicalmodels of these losses have to be developed. In a typicalapplication the superconductor is utilised in a coilconfiguration where the actual magnetic field is considerablehigher than for a straight structure. For power frequencies thelosses are dominated by hysteresis losses and flux flowlosses. In this thesis, mathematical models of the hysteresis andthe flux flow losses as a function of a transport current, anexternal magnetic field, the temperature and the frequency havebeen developed. The transport current and the magnetic field,which are assumed to be proportional to each other, includeboth an ac and a dc component. The models of the hysteresislosses are based on the critical state theory, and for twoidealised geometries, an infinite slab and a thin strip, newexact closed form equations have been derived. The equationsfor the two idealised geometries are then superimposed tofacilitate the description of a more realistic geometry, i.e. asuperconducting tape with a finite width and thickness. Themodel of the flux flow losses is valid for a tape shapedconductor and is based on both measurements and reasonablephysical assumptions. For the development and the validation ofthe models, a calorimetric measurement set-up has been used.From a limited number of relatively simple measurements, thedeveloped models can be adjusted to a certain superconductor,and the power losses for the actual superconductor can bepredicted in considerable more complicated cases. <b>Keywords:</b>high-temperature superconductor, hysteresislosses, flux flow losses, critical state model, calorimetricmeasurements
92

Electron Correlations and Spin in Asymmetric GaAs Quantum Point Contacts and Signatures of Structural Transitions in Hall Effect of FeSe

Wu, Phillip M. January 2010 (has links)
<p>The 1D Wigner crystal is a long sought after strongly correlated quantum state. Here we present electronic transport data of asymmetric quantum point contacts (QPC) tuned to the spin-incoherent regime, which provides evidence for achieving the 1D Wigner state. Our result can be distinguished in several particularly noticeable ways. First, we utilize an asymmetric point contact geometry that is simple to fabricate and has not been studied previously. We are able to tune to the conductance anomalies simply by asymmetrically applying voltages to the gates. Second, we observe clear suppression of the first plateau and direct jumps to the second in these asymmetric QPCs at liquid helium temperatures (4.2 K). Such conductance behavior is indicative of Wigner crystal row formation.</p> <p>This thesis suggests that the novel geometry and gating scheme allows for a novel way to search for strongly correlated electronic behavior in quasi-1D quantum wires. A key finding is the importance of asymmetric QPCs for observation of anomalous transport characteristics. We have observed a strongly developed e<super>2</super>/h feature under asymmetric voltage gating and zero applied magnetic field. Such a feature is attributed to enhanced spin energies in the system. We believe the asymmetric design allows for a relaxing of the 1D confinement so that a quasi-1D electron conformation develops, which in turn allows for various possible magnetic states. In addition, by optimally tuning the confinement potential, we observe an unexpected suppression of the 2e<super>2</super>/h plateau. This provides further evidence for unusual electron arrangements in the asymmetric quantum point contact.</p> <p>I also discuss transport studies on the new FeSe superconductor. Our collaboration discovered the superconducting &beta;-FeSe compound with a Tc approximately 8 K. The crystal lattice structure of &beta;-FeSe is by far the simplest of the Fe superconductors. One of the most interesting observations regarding FeSe is that the crystal structure undergoes a structural transition at approximately 105 K from tetragonal to orthorhombic (or triclinic) symmetry. We believe this structural transition to be closely related to the origin of superconductivity in this class of materials.</p> <p>Transport studies also seem to support this claim. From Hall effect measurements of bulk FeSe, we find that FeSe is likely a two band (electron and hole) superconductor, which suggests it is quite different from the cuprates, and that very unconventional superconducting mechanisms are at play. The temperature dependence of the Hall coefficient is measured, and found to rapidly increase below 105 K. This suggests the scattering time related to hole bands dominate the transport at low temperature. As there is no magnetic ordering observed at low temperature, we do not expect the scattering from random Fe magnetic impurities to play a significant role in the enhanced hole scattering times. Thus, we speculate that this change is related to the structural transition observed.</p> / Dissertation
93

Development of loss models for a high-temperature superconducting tape

Schönborg, Niclas January 2001 (has links)
<p>In the recent years significant progresses in thedevelopment of high-temperature superconductors have been made.It is realistic to believe that power applications, based onthese conductors, in a few years will become available. To beable to utilise the conductors in an optimum way, theunderstanding of their behaviour under application-likecondition is essential. One important parameter that has to beoptimised is the power loss, which means that mathematicalmodels of these losses have to be developed. In a typicalapplication the superconductor is utilised in a coilconfiguration where the actual magnetic field is considerablehigher than for a straight structure. For power frequencies thelosses are dominated by hysteresis losses and flux flowlosses.</p><p>In this thesis, mathematical models of the hysteresis andthe flux flow losses as a function of a transport current, anexternal magnetic field, the temperature and the frequency havebeen developed. The transport current and the magnetic field,which are assumed to be proportional to each other, includeboth an ac and a dc component. The models of the hysteresislosses are based on the critical state theory, and for twoidealised geometries, an infinite slab and a thin strip, newexact closed form equations have been derived. The equationsfor the two idealised geometries are then superimposed tofacilitate the description of a more realistic geometry, i.e. asuperconducting tape with a finite width and thickness. Themodel of the flux flow losses is valid for a tape shapedconductor and is based on both measurements and reasonablephysical assumptions. For the development and the validation ofthe models, a calorimetric measurement set-up has been used.From a limited number of relatively simple measurements, thedeveloped models can be adjusted to a certain superconductor,and the power losses for the actual superconductor can bepredicted in considerable more complicated cases.</p><p><b>Keywords:</b>high-temperature superconductor, hysteresislosses, flux flow losses, critical state model, calorimetricmeasurements</p>
94

Aukštatemperatūrinio superlaidininko Sr1-xCaxCuO2 susidarymo ypatumai / Peculiarities of high-temperature superconductor Sr1-xCaxCuO2 formation

Rimšelytė, Inga 13 June 2005 (has links)
The high-temperature superconductor Sr1-xCaxCuO2 was synthesized using sol-gel, solid-state reaction and co-precipitation methods. The analysis of its formation was made and the structure of the products was determined with the help of the X-ray diffraction. The termal processes, that take place during the synthesis, were analyzed with the help of differential-termal analysis. The experiment has showed that the SrCuO2 formes in the the process of heating the citrats precursors at the temperature of 800oC. And the S0,5Ca0,5CuO2 formes at 900oC by sol-gel, solid-state reaction methods. The best results are achieved using citric gel precursor at the temperature of 900oC. The increase of heating duration up to 36 hours, made no considerable diference in the qualitative composition, however this has changed the quantitative composition.
95

Enhanced Flux-Pinning Properties in Superconducting YBa2Cu3O7-δ Thin Films with Nanoengineering Methods

Tsai, Chen-Fong 03 October 2013 (has links)
Since the discovery of the high temperature superconductor YBa2Cu3O7-δ (YBCO), with transition temperature (Tc = 77 K), above liquid nitrogen point in 1987 many research projects have been dedicated to enhancing the high field performance of this material for practical applications. The 2nd generation YBCO-based coated conductors are believed to be the most promising approach for commercial applications including power transmission, motors, generators, and high field magnets. With the advances of nanotechnologies, different nanoengineering methods have been demonstrated to enhance the performance of YBCO thin films, include doping with 0-dimensional (0-D) self-assembled nanoparticles, 1-dimensional (1-D) nanorods, and 2-dimensional (2-D) nanolayers. Furthermore, dopants with ferromagnetic properties are also reported to provide enhanced pinning effects by Lorentz force, especially under high-applied magnetic fields. The principle of these methods is to generate high-density defects at the heterogeneous interfaces as artificial pinning centers in an effort to improve the flux-pinning properties. The morphology and dimensions of the nanoinclusions play an important role in pining enhancement. Optimized pinning structures are likely to be located at energetically favorable vortex cores, which form a triangular lattice with dimensions close to the YBCO coherence length ξ (ξab ~ 4 nm; ξc ~ 0.5 nm at 77 K.) However, it is challenging to achieve small dimensional nanodopants in the vapor deposited YBCO thin films. The purpose of this research is to utilize nanoengineering methods to produce optimized pinning structure in YBCO thin films. In this thesis, we systematically study the effects of different nanoinclusions on the flux-pinning properties of YBCO thin films. The 0-D ferromagnetic Fe2O3 and CoFe2O4 nanoparticles, 2-D CeO2 multilayers, and tunable vertically aligned nanocomposites (VAN) of (Fe2O3)x:(CeO2)1-x and (CoFe2O4)x:(CeO2)1-x systems are introduced into the YBCO matrix as artificial pinning centers. Results suggest that all nanoinclusions showed significant enhancement in the superconducting properties of YBCO. The ferromagnetic pinning centers dominate at high field and low temperature regimes, however, the defect pinning centers dominate at low field and high temperature regimes. The uniquely arranged VAN structure of alternating magnetic and non-magnetic nanophases, which incorporates both high defect density and tunable distribution of magnetic dopants, is believed to be an ideal solution for flux-pinning enhancement.
96

High-field electron spin resonance study of electronic inhomogeneities in correlated transition metal compounds

Alfonsov, Alexey 12 October 2011 (has links) (PDF)
Electronic inhomogeneities play an important role in the definition of physical properties of correlated systems. To study these inhomogeneities one has to use local probe techniques which can distinguish electronic, magnetic and structural variations at the nanoscale. In the present work the high-field electron spin resonance technique (HF-ESR) is used to probe electronic and magnetic inhomogeneities in two transition-metal element based systems with very different properties. The first system is an iron based hightemperature superconductor, namely a member of a so called 1111-family, the (La,Gd)O1−xFxFeAs compound. Our HF-ESR spectroscopy study on Gd3+ ion has revealed that this material exhibits anisotropic interaction between Gd and Fe layers, which is frustrated in the absence of an external magnetic field. Moreover, the study of the superconducting samples has shown a coexistence of a static short range magnetic order with superconductivity up to high doping levels. The second system is a lightly hole doped cubic perovskite LaCoO3. Here, our HF-ESR investigation, complemented with static magnetometry and nuclear magnetic resonance techniques, has established that the hole doping induces a strong interaction between electrons on neighboring Co ions which leads to a collective high-spin state, called a spin-state polaron. These polarons are inhomogeneously distributed in the nonmagnetic matrix. This thesis is organized in three chapters. The first chapter gives basic ideas of magnetism in solids, focusing on the localized picture. The aim of the second chapter is to introduce the method of ESR. The third chapter is dedicated to the study of 1111-type iron arsenide superconductors. In the first part X-band (9.5 GHz) ESR measurements on 2% and 5% Gd-doped LaO1−xFxFeAs are presented. In the second part a combined investigation of the properties of GdO1−xFxFeAs samples by means of thermodynamic, transport and high-field electron spin resonance methods is presented. The last, fourth chapter presents the investigation of the unexpected magnetic properties of lightly hole-doped LaCoO3 cobaltite by means of the electron spin resonance technique complemented by magnetization and nuclear magnetic resonance measurements.
97

Efeito de constrições na dinâmica de vórtices cinemáticos em supercondutores gap-like e gapless /

Souto, Vinícius Suzuki. January 2018 (has links)
Orientador: Rafael Zadorosny / Resumo: Nesse trabalho estudou-se a dinâmica e os fatores de formação de vórtices cinemáticos em supercondutores mesoscópicos sem gap (gapless). Os resultados foram comparados com aqueles de um sistema com gap (gap-like). Para tal, as simulações computacionais foram direcionadas para a solução das equações generalizadas de Ginzburg-Landau dependente do tempo (GTDGL). Primeiramente simulamos amostras homogêneas onde verificou-se que, no sistema gap-like, as correntes se concentram no centro da amostra, com isso, há formação de vórtices cinemáticos. Para criar artificialmente o acúmulo de correntes no centro da amostra, inserimos uma constrição e assim, obtivemos a formação de vórtices cinemáticos em supercondutores gapless. A dinâmica é sempre com um par se formando nas bordas da amostra e se aniquilando no centro. Nota-se que, além da formação de VAv (início do estado resistivo) ocorrer em valores distintos da densidade de corrente aplicada para as diferentes amostras, a corrente crítica apresenta uma pequena diferença entre as amostras gapless e gap-like. Vale ressaltar que parâmetros como o tamanho dos contatos elétricos e a constrição afetam a corrente crítica da amostra, bem como a velocidade média do vórtice cinemático. / Abstract: In this work we study the dynamics and the formation of kinematic vortices in gapless mesoscopic superconductors. The results were compared to those ones of a gap-like system. Then computational simulations were carried out to solve the Generalized Time-Dependent Ginzburg-Landau equations (GTDGL). Firtly, we simulated homogeneous gap-like and gapless samples where it was found that, in the rst one, the currents concentrate in the center of the sample and then, there was the formation of kinematic vortices. To arti cially promote the crowding of the currents in the center of the sample, we worked with samples a constriction. In this way, kinematic vortices in gapless superconductors were formed. The dynamic is always with a pair forming at the edges of the sample and annihilating in the center. It is noted that, besides the formation of a vortex (antivortex) (begin of resistive state) occurs at distinct values of the applied current density for diferent samples, the electric critical current presents a tiny di erence between gapless and gap-like samples. It is worth mentioning that parameters such as the size of electrical contacts and constriction a ect the critical current of the sample as well as the average velocity of the kinematic vortex. / Mestre
98

Fabricação e caracterização de fios supercondutores do sistema BSCCO pelo método Powder-In-Tube (PIT) /

Souza, Élton José de. January 2011 (has links)
Orientador: Cláudio Luiz Carvalho / Banca: Haroldo Naoyuki Nagashima / Banca: Isaias Gonzaga de Oliveira / Resumo: Com o surgimento da supercondutividade as pesquisas envolvendo aplicações desta, em especial no transporte de energia, obtiveram um avanço promissor ao longo dos anos. Assim, este trabalho objetivou a fabricação de fios supercondutores utilizando o método Powder-In-Tube (PIT), no qual foi inserido dentro de um tubo de prata o pó da cerâmica supercondutora do sistema BSCCO. Estudos preliminares foram feitos em pastilhas feitas com o mesmo material supercondutor e após alguns resultados foram confeccionados os fios supercondutores. Medidas de caracterização foram feitas dentre elas a difratometria de raios-X, medidas elétricas pelo método de quatro pontas e microscopia do tipo (FEG-MEV) equipado com EDS para determinar a morfologia e composição química dos elementos na amostra. Os resultados de difratometria de raios-X apresentaram a formação das fases desejadas do sistema BSCCO de diferentes concentrações dentre elas as fases Bi-2212 Bi- 2223 e Bi-2234 contidas nas amostras sintetizadas. As medidas elétricas detectaram uma queda abrupta na resistência elétrica dos fios mostrando a faixa de transição supercondutora das amostras estudadas. As medidas de densidade de corrente com base no critério de corrente de 1μV/cm, utilizadas nos fios confeccionados, foram obtidos valores da ordem de 1,30 - 3,90 (KA/m2). Nas imagens de microscopia vale ressaltar uma melhora na interação entre os grãos supercondutores nas amostras submetidas a um maior tempo de sinterização e também foi possível verificar e analisar através da extrusão a compactação do pó cerâmico dentro do tubo de prata. O EDS detectou a composição química dos elementos nas amostras bem como a concentração das fases em determinadas regiões analisadas / Abstract: With the emergence of superconductivity research involving applications of this, particularly in the transport of energy, had a promising advance over the years. This study aims to manufacture superconducting wires using the method Powder-In-Tube (PIT), which was inserted inside a tube of silver powder of superconducting ceramic BSCCO system. Preliminary studies were done on pellets made with the same superconducting material, and after some results were prepared the superconducting wires. Characterization measurements were made among them the X-ray diffraction, electrical measurements by the method of four points and type of microscopy (FEG-SEM) equipped with EDX to determine the morphology and chemical composition of the elements in the sample. The results of X-ray diffraction showed the formation of the desired phases for this type of superconductor, ie the BSCCO system between them was possible to determine the Bi-2212 phase, Bi-2223 and Bi-2234 contained in the synthesized samples. The electrical measurements have detected a sudden drop in electrical resistance of the wires showing the range of superconducting transition with good accuracy. It was possible to perform the calculation of current density in the wires made based on a criterion of 1 μV/cm were obtained and values of around 1,30- 3,90 (KA/m2). The values are consistent with the specifications of the samples and within the limits of our research. In microscopy images is noteworthy improvement in the interaction between the superconducting grains in samples submitted to a higher sintering time and it was possible to verify and analyze the compaction of ceramic powder into silver tube through the extrusion process. The EDX detected the chemical composition of the elements in the samples in a qualitative way / Mestre
99

Preparação e caracterização de filmes supercondutores do sistema BSCCO

Peruzzi, Raphael Otávio [UNESP] 15 September 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-09-15Bitstream added on 2014-06-13T20:26:57Z : No. of bitstreams: 1 peruzzi_ro_me_ilha_prot.pdf: 4445456 bytes, checksum: 0e311bb9932e4122acd64b8b3ac049c8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Devido a grande preocupação em se desenvolver novos materiais e técnicas para suprir a necessidade por novos recursos e atender com maior comodidade e eficiência a população mundial, estão surgindo novas áreas de pesquisas que visam suprir esta deficiência, seja criando novas tecnologias, ou mesmo aprimorando as técnicas existentes a fim de se obter um melhor aproveitamento dos recursos já existentes. Assim, estamos nos interessando por um ramo da ciência pouco conhecido, mas com um potencial muito elevado a ser descoberto, estamos falando dos materiais supercondutores, que pouco se sabe a respeito deles, porém muito já se faz com os mesmos. Desta maneira estamos apostando numa área mista, onde não usaremos os materiais supercondutores como sendo meramente condutores de energia e sim como dispositivos eletrônicos. Então, começamos o nosso trabalho, desenvolvendo materiais supercondutores na forma de filmes finos que é a base para o desenvolvimento desses dispositivos. Sendo assim escolhemos o sistema BSCCO, que tem como base os seguintes elementos, Bismuto, Estrôncio, Cálcio, Cobre e Oxigênio e que pode apresentar uma temperatura de transição da fase condutora para a fase supercondutora na faixa de 35 - 110K. Deste modo, nos propomos a estudar este tipo de material e desenvolver filmes finos, capazes de serem usados como... / Due to great concern in developing new materials and techniques to supply the need for new resources and to assist with larger comfort and efficiency the world population, new areas of researches that seek to supply this deficiency are appearing, by creating new technologies, or even improving the existent techniques in order to obtain a better use of the resources already existent. Like this, we are being interested in a branch of the little known science, but with a very high potential to be discovered, we are talking about the superconductor materials, that little it is known regarding them. However it is much already done with the same ones. In this way we are betting in a mixed area, where we won't use the superconducting materials as being merely drivers of energy but like electronic devices. Then, we began our work, developing superconductor materials in the form of thin films that is the base for the development of those devices. The system BSCCO was chose because it has composed by the following elements, Bismuth, Strontium, Calcium, Copper and Oxygen and that it may present a transition temperature of the conductive phase for the superconductive phase in the range of 35 - 110K. This way, we have studied this material type and to develop thin films, capable of be used as base for electronic devices. In our work we ...(Complete abstract click electronic access below)
100

Electron tunnelling study of high-temperature superconductors

Chandler, Simon John January 1994 (has links)
This dissertation describes work carried out between June 1987 and October 1991, in the Low Temperature Physics Group at the Cavendish Laboratory, Cambridge. The aim of this work was to use electron tunnelling spectroscopy to measure the density of excitation states of the recently discovered high-temperature superconductors. Tunnelling is the most sensitive method for measuring a superconductor’s energy gap, and historically has provided important evidence for the microscopic mechanism of superconductivity in conventional metals. It was hoped that electron tunnelling would prove equally successful in revealing the mechanism of superconductivity in these new materials. Preliminary experiments showed that a thick, degraded surface layer prevented preparation of high-quality tunnel junctions by conventional evaporation techniques. For this reason, apparatus for the formation and fine control of low-temperature point-contact junctions was constructed, together with new measurement electronics and a computer-controlled data-acquisition system. To test this apparatus, point-contact junctions were formed on conventional superconductors. By increasing pressure of the tip on the sample the junction could be moved from the tunnelling to the metallic regime. Point-contact measurements were then made on a number of ceramic, single-crystal and thin-film high-temperature superconducting materials; some not previously investigated by tunnelling. Although ‘gap-like’ structure was occasionally observed, anomalous features (e.g., voltage-dependent background, broadening, large zero-bias conductance) were always present and usually dominated the tunnelling characteristics. These complicate estimation of the energy gap and preclude measurement of more subtle properties such as gap anisotropy or the effective phonon spectrum, α2F. The origins of these non-ideal features have been much debated in the literature and are reviewed in this dissertation. In the case of thin films deposited by laser ablation the tunnelling characteristics were dominated by single-electron tunnelling effects (Coulomb gap and staircase structure). The results suggest that the surface region consists of numerous, isolated normal metal particles.

Page generated in 0.0539 seconds