• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficiency Improvements with Super Capacitors in Mechatronic Systems / Regenerering i mekatroniska system med superkondensatorer

Sundberg, Nicklas January 2007 (has links)
The production industry is getting more and more automated and that implies higher energy consumption. With the increasing awareness of the earth limited resources and the increasing energy prices, energy conservation grows in relevance, both due to cost reduction and environmental benefits. One way to conserve energy is to optimize the energy usage within the business and reduce the losses. Regenerative braking is already in use today for this purpose in vehicles. The aim of this thesis is to investigate how regenerative braking can be fitted into the production industry and what adaptations need to be made. This thesis is based on an earlier study that has set up a mathematical model for energy regeneration in mechatronic systems and the goal of this thesis is to build a test rig and verify the correctness of these models. One suggested improvement to the automotive systems are the introduction of super capacitors as a secondary energy source because they can charge more rapidly compared to batteries which is required during the expected fast accelerations. In the performed tests an efficiency improvement of 10 % was shown. The earlier study however suggests an efficiency rate of 60% but those models do not include frictional nor electrical losses. The results are complemented by a discussion were a number of changes to the design is proposed. A different motor control system would significantly enhance the rig and a result more like the expected can be achieved. / Det ökade antalet elektromekaniska maskiner i industriella tillämpningar medför en ökad energianvändning. Då våra begränsade resurser mer och mer belyses i media och med stigande energipriser ökar intresset hos företagen för att minska sin energianvändning, dels för att reducera sina kostnader och dels för att minska den miljöbelastning slutprodukten medför. Ett sätt att göra detta är att minska energiförlusterna inom sin produktion. Regenerativ bromsning är en teknik som används i fordon idag och kan användas för detta syfte. Detta arbete ska undersöka hur sådan teknik kan användas i tillverkningsindustrin och vilka förändringar som måste göras. Ett tidigare arbete har satt upp teoretiska modeller för detta och det här arbetet syftar till att bygga en tesrigg för att praktiskt undersöka modellernas korrekthet. En förbättring mot det system som används i dagens bilar är att införa superkondensatorer som parallell energikälla då dessa är snabbare på att lagra energi än ett batteri och därför passar bättre för de snabba accelerationer och retardationer som förekommer i industriprocesser. De genomförda testerna påverkades negativt av vissa begränsningar i hårdvaran men resultatet visar ändå att regenereringen kan återföra 10 % av energin till kondensatorerna, det motsvarar däremot inte den mängden som de tidigare uppsatta modellerna förutspådde. Orsakerna är olika förluster i systemet som inte modellerna tar hänsyn till. De viktigaste förlustfaktorerna beror på friktion och styrningen av elektroniken. Med en annan typ av motorstyrning kan förlusterna minskas och ett resultat mer likt det förväntade uppnås.
2

Energialstring för drivande av smart enhet utan batterier : Design av ett energialstrande system för smart sko genom piezoelektronik och solceller / Energy harvesting to power smart unit without batteries : Design of an energy harvesting system implementing piezoelectronics and solar cells for a smart shoe

Rudd, Clive January 2019 (has links)
Projektet beskriver ett tillvägagångssätt för att alstra energi genom solceller och piezoelektronik. Ett kretskortsbaserat system designades som utnyttjade superkondensatorer som lagringsenhet. Planen var att integrera systemet i en sko. Genom denna teknik kan man då substituera eller minimera batteriladdningen för smarta enheter eller mindre anordningar. Det önskvärda resultatet med projektet var att se om det gick att koppla detta system till en mikrokontroller som kunde drivas på låg spänning. Rapporten fick ett positivt resultat med en konstant utspänning på 1.8 volt som kunde driva en mikrokontroller. Dock tog det lång tid för superkondensatorerna att laddas upp på grund av den impedans som fanns i systemet. Aktiviteter som utnyttjar detta system kommer att påverka uppladdningens resultat. Detta gör kretsen optimal för aktiviteter som involverar rörelse och sol, såsom hiking. / The past couple of decades gave rise to smartphones, smart watches, and smart homes. Now researchers are looking for ways to make smart clothing. One use case of smart clothing is smart shoes which can give some very useful sensed information especially in the sports industry and healthcare. Such sensed data include temperature, distance and calories, fall detection and many more. This application scenario can be designed to be battery free if we make use of the human motion and solar power. Many research papers exist which present how to exploit swing and shock excitations from the shoes to harvest energy. In this project this energy combined with solar energy will be used to power a low driven MCU. I design a pcb which include solar panels and piezoelectric modules to store the energy in supercapacitors. The goal is to integrate this pcb in a shoe, meaning that it has to have a small size and low power. The results of the project showed that a constant voltage at 1.8 volt could be achieved however recharge time is a factor to take into consideration. The system showed positive results for activities including movements and sun such as hiking.
3

Design and implementation of an energy harvesting system in a prosthetic limb / Design och implementering av ett energiskördssystem i en protetisk lem

Rúnarsson, Ódinn K. January 2023 (has links)
Energy Harvesting, also known as power harvesting or ambient power, is the process of obtaining small amounts of power from secondary sources, such as vibrations, light, temperature variations and even radio-frequency emissions. These systems have been uncommon in personal and wearable electronics in the past, however they are slowly gaining traction. With the increasing sophistication of prosthetic limbs and implants, devices that in some cases require a consistent and reliable power source, the potential field of application for energy harvesting grows wider. This thesis project evaluates whether energy harvesting methods could be implemented in future prosthetic limb designs without significantly affecting weight, user comfort, complexity of design etc., and whether the gains of such an implementation would be worth the effort and cost put into it. For reference the project used the RHEO KNEE® by Össur Hf., a microcontroller controlled prosthetic knee, as a device that such a system could be integrated with. Energy harvesting is still an emerging field and is a long time away from being a viable primary power source for most electronic devices. However, it still might have potential as a supplementary source for extending charge cycles or making smaller (and therefore more lightweight) power cells viable. This master’s thesis project was broad in scope and included 3D-design; mechanical, electrical and embedded software design; and setting up a miniature kinetic power generator as well as a photovoltaic harvesting system. No amputees were available for testing the designs so the system was tested with a 3D-printed model that was moved by hand to simulate the generation process. Due to some incorrect inital assumptions, the final electronic design was not optimal for this kind of system. However, a kinetic generator that harvested power from a modeled heel striking the ground 50 times a minute produced about 23mW of power. 53cm2 of photovoltaic panels produced 42μW of power in an ambient light setting. For comparison, a low-power microcontroller needed about 119μW of power on average to do some simple processing and send Bluetooth transmissions once every two seconds. / Energiinsamling (e. Energy Harvesting), är processen för att erhålla små mängder kraft från sekundära källor, såsom vibrationer, ljus, temperaturvariationer och utstrålning i radiofrekvens. Dessa system har varit ovanliga i hemelektronik och bärbar teknik, men de vinner sakta dragkraft. Med den ökande förfining av proteser och implantat, som i vissa fall kräver en jämn och pålitlig strömkälla, växer det potentiella användningsområdet för energiinsamling. Detta examensarbete utvärderar huruvida energiinsamlingsmetoder skulle kunna implementeras i framtida proteskonstruktioner utan att nämnvärt påverka vikt, användarkomfort, komplexitet i design etc., och om vinsterna med en sådan implementering skulle vara värd ansträngningen och kostnaden. Som exempel använde detta projekt en datoriserad knäprotes av Össur HF, RHEO KNEE®, som exempel på ett system som energiinsamling skulle kunna integreras med. Energiinsamling är fortfarande ett växande forskningsområde och är långt ifrån att en strömkälla för det mesta elektronik.. Det kan ändå ha potential som en kompletterande strömkälla som kan förlänga laddningscykler eller göra mindre (och därför lättare) batterier möjliga. Detta examensarbete var brett i omfattning och inkluderade 3D-design; mekanisk-, elektrisk- och mjukvara-design; och inrättning av en kinetisk kraftgenerator i miniatyr samt ett ljusdrivet energiinsamlingssystem. Inga amputerade var tillgängliga för att testa designen, därför så testades systemet med en 3D-printad modell som rördes för hand för att simulera strömförsörjelseprocessen. På grund av några felaktiga initiala antaganden var den slutliga elektroniska designen inte optimal för denna typ av system. Ändå lyckades en kinetisk generator som använde energiinsamlingsprinciper producera cirka 23mW ström genom en simulerad häl som träffade marken cirka 50 gånger i minuten. 53cm2 solcellspaneler producerade 42μW energi i en ljussatt miljö. Som jämförelse behövde en strömsnål styrkrets i genomsnitt cirka 119μW effekt för att genomföra enkla programprocesser och skicka Bluetooth-överföringar en gång varannan sekund. / Hliðarorkuöflun (e. energy harvesting), sem einnig bætti kalla umhverfisöflun, er ferlið við að fá lítið magn af orku frá óbeinum aflgjafa, svo sem frá hristingi, ljósi, hitabreytingum og jafnvel útvarpsbylgjum. Þessi kerfi hafa verið sjaldgæf í raftækjum hingað til, þó þau eru hægt og rólega að fá hlutdeild. Með nýrri og fágaðri gervilimum og ígræðslum, tæki sem í sumum tilvikum þurfa samfellda og áreiðanlega orkjugjafa, víkkar mögulegt notkunarsvið hliðarorkuöflunar. Þetta lokaverkefni metur hvort aðferðir við hliðarorkuöflun gætu verið notaðar í hönnun gervilima framtíðarinnar án þess að hafa neikvæð áhrif á þyngd, þægilegheit, flóknun hönnunar o.þ.h., og hvort hagur sé í samræmi við framlag og kostnað. Þetta verkefni notar RHEO KNEE® frá Össuri Hf. sem viðmið, sem er gervihné stjórnað af örtölvu. Viðmiðinu er ætlað að sýna notagildi kerfisins. Hliðarorkuöflun er ennþá svið í þróun og er nokkuð í að það geti orðið frumorkugjafi fyrir flest raftæki. Hins vegar þá gæti það enn átt möguleika á að vera aukaorkugjafi til að auka tímalengd hverrar hleðslu eða gera minni og léttari rafhlöður raunhæfari. Þetta meistaraverkefni var viðamikið að því leiti að það fól í sér þrívíddarhönnun; vél-, raf- og hugbúnaðarhönnun; og uppsetningu á hreyfirafal ásamt ljósorkuöflunarkerfi. Engir einstaklingar sem misst hafa fót voru til staðar til að prófa hannanir þessa verkefnis. Þ.a.l. voru þær prófaðar með þrívíddarprentuðum líkönum sem hreyfð voru með handafli til að líkja eftir orkuframleiðsluferlinu. Vegna rangrar upprunalegrar forsendu þá var endanleg rafhönnunin ekki ákjósanleg fyrir slíkt kerfi. Hreyfirafall tengdur við gervihæl sem sló jörðu 50 sinnum á mínútu framleiddi þó 23mW af orku. 53cm2 af ljósorkueiningum framleiddu 42μW af afli í meðal herbergisbirtu. Til samanburðar þá eyðir skilvirk örtölva u.þ.b. 119μW af afli í einfaldri tölvuvinnslu ásamt því að senda Bluetooth sendingu á tveggja sekúnda fresti.

Page generated in 0.1052 seconds