11 |
Interaction between a Supersonic Jet and Tubes in Kraft Recovery BoilersPophali, Ameya 11 January 2012 (has links)
Sootblowing is a process in which supersonic steam jets are used to periodically blast deposits off heat transfer tubes in kraft recovery boilers. However, sootblowing significantly consumes the valuable high pressure steam generated by the boiler, hence it should be optimized. A recovery boiler consists of three convective sections - superheater, generating bank and economizer. The tube arrangement in these sections, particularly the tube spacing is different from each other. Moreover, tubes in an economizer are finned. A sootblower jet will interact differently with these tube arrangements, potentially affecting its strength, and hence deposit removal capability.
The objective of this work was to characterize jet/tube interaction in the three sections of a recovery boiler. Lab-scale experiments were conducted in which these interactions were visualized using the schlieren technique coupled with high-speed video, and were quantified by pitot pressure measurements. This work is the first to visualize the interactions. The offset between the jet and tube centrelines, the nozzle exit diameter relative to the tube diameter, and the distance between the nozzle and tube were varied to examine their effects on jet/tube interaction.
Results showed that due to the very low spreading rate of a supersonic jet, a jet (primary jet) stops interacting with a superheater platen when the jet is only a small distance away from it. When the jet impinges on a tube, the jet deflects at an angle, giving rise to a weaker ‘secondary’ jet. Due to the large inter-platen spacing, a secondary jet has an insignificant impact in a superheater. In a generating bank, the primary jet weakens between the closely spaced tubes due to increased mixing. However, a secondary jet impinges on the adjacent tubes exerting a high impact pressure on those tubes. The primary jet also weakens between finned economizer tubes, but remains stronger for a greater distance than in a generating bank. As in the case inside a generating bank, a secondary jet also impinges on adjacent rows of tubes in an economizer.
The results imply that in a superheater, a sootblower jet must be directed close to the platens to yield useful jet/deposit interactions, and to avoid wasting steam by blowing between the platens. In a generating bank, deposits beyond the first few tubes of a row experience a weaker sootblower jet, and thus may not be removed effectively. However, secondary jets may contribute to removing deposits from the first few adjacent tubes. They may also induce erosion-corrosion of those tubes. Secondary jets may also help remove deposits from adjacent rows in a finned tube economizer. In an economizer, the strength and hence, the deposit removal capability of a sootblower jet diminish only slightly beyond the supersonic portion of the jet.
A mathematical model was also developed to determine the feasibility of using inclined sootblower nozzles in recovery boiler superheaters, and suggests that it may be possible to clean superheater platens more effectively with slightly inclined nozzles.
|
12 |
Interaction between a Supersonic Jet and Tubes in Kraft Recovery BoilersPophali, Ameya 11 January 2012 (has links)
Sootblowing is a process in which supersonic steam jets are used to periodically blast deposits off heat transfer tubes in kraft recovery boilers. However, sootblowing significantly consumes the valuable high pressure steam generated by the boiler, hence it should be optimized. A recovery boiler consists of three convective sections - superheater, generating bank and economizer. The tube arrangement in these sections, particularly the tube spacing is different from each other. Moreover, tubes in an economizer are finned. A sootblower jet will interact differently with these tube arrangements, potentially affecting its strength, and hence deposit removal capability.
The objective of this work was to characterize jet/tube interaction in the three sections of a recovery boiler. Lab-scale experiments were conducted in which these interactions were visualized using the schlieren technique coupled with high-speed video, and were quantified by pitot pressure measurements. This work is the first to visualize the interactions. The offset between the jet and tube centrelines, the nozzle exit diameter relative to the tube diameter, and the distance between the nozzle and tube were varied to examine their effects on jet/tube interaction.
Results showed that due to the very low spreading rate of a supersonic jet, a jet (primary jet) stops interacting with a superheater platen when the jet is only a small distance away from it. When the jet impinges on a tube, the jet deflects at an angle, giving rise to a weaker ‘secondary’ jet. Due to the large inter-platen spacing, a secondary jet has an insignificant impact in a superheater. In a generating bank, the primary jet weakens between the closely spaced tubes due to increased mixing. However, a secondary jet impinges on the adjacent tubes exerting a high impact pressure on those tubes. The primary jet also weakens between finned economizer tubes, but remains stronger for a greater distance than in a generating bank. As in the case inside a generating bank, a secondary jet also impinges on adjacent rows of tubes in an economizer.
The results imply that in a superheater, a sootblower jet must be directed close to the platens to yield useful jet/deposit interactions, and to avoid wasting steam by blowing between the platens. In a generating bank, deposits beyond the first few tubes of a row experience a weaker sootblower jet, and thus may not be removed effectively. However, secondary jets may contribute to removing deposits from the first few adjacent tubes. They may also induce erosion-corrosion of those tubes. Secondary jets may also help remove deposits from adjacent rows in a finned tube economizer. In an economizer, the strength and hence, the deposit removal capability of a sootblower jet diminish only slightly beyond the supersonic portion of the jet.
A mathematical model was also developed to determine the feasibility of using inclined sootblower nozzles in recovery boiler superheaters, and suggests that it may be possible to clean superheater platens more effectively with slightly inclined nozzles.
|
13 |
Untersuchungen zum Einfluss von London-Dispersionswechselwirkungen auf die Molekülaggregation / Influence of London dispersion on molecular aggregationAltnöder, Jonas 21 May 2015 (has links)
No description available.
|
14 |
Simulation des émissions d'un moteur à propergol solide : vers une modélisation multi-échelle de l'impact atmosphérique des lanceurs / Large eddy simulations of a solidrocket motor jet : towards a multi-scale modeling of the atmospheric impact of rocket emissionsPoubeau, Adèle 12 February 2015 (has links)
Les lanceurs ont un impact sur la composition de l'atmosphere, et en particulier sur l'ozone stratospherique. Parmi tous les types de propulsion, les moteurs à propergol solide ont fait l'objet d'une attention particulière car leurs émissions sont responsables d'un appauvrissement significatif d'ozone dans le panache des lanceurs lors des premières heures suivant le lancement. Ce phénomène est principalement dû à la conversion de l'acide chlorhydrique, un composé chimique présent en grandes quantités dans les émissions de ce type de moteur, en chlore actif qui réagit par la suite avec l'ozone dans un cycle catalytique similaire à celui responsable du "trou de la couche d'ozone", cette diminution périodique de l'ozone en Antarctique. Cette conversion se produit dans le panache supersonique, où les hautes températures favorisent une seconde combustion entre certaines espèces chimiques du panache et l'air ambiant. L'objectif de cette étude est d'évaluer la concentration de chlore actif dans le panache d'un moteur à propergol solide en utilisant la technique des Simulations aux Grandes Echelles (SGE). Le gaz est injecté à travers la tuyère d'un moteur et une méthode de couplage entre deux instances du solveur de mécanique des fluides est utilisée pour étendre autant que possible le domaine de calcul derrière la tuyère (jusqu'à l'équivalent de 400 diamètres de sortie de la tuyère). Cette méthodologie est validée par une première SGE sans chimie, en analysant les caractéristiques de l'écoulement supersonique avec co-écoulement obtenu par ce calcul. Ensuite, le chimie mettant en jeu la conversion des espèces chlorées a été étudiée au moyen d'un modèle "hors-ligne" permettant de résoudre une chimie complexe le long de lignes de courant extraites d'un écoulement moyenné dans le temps résultant du calcul précédent (non réactif). Enfin, une SGE multi-espèces est réalisée, incluant un schéma chimique auparavant réduit afin de limiter le coût de calcul. Cette simulation représente une des toutes premières SGE d'un jet supersonique réactif, incluant la tuyère, effectuée sur un domaine de calcul aussi long. En capturant avec précision le mélange du panache avec l'air ambiant ainsi que les interactions entre turbulence et combustion, la technique des simulations aux grandes échelles offre une évaluation des concentrations des espèces chimiques dans le jet d'une precision inédite. Ces résultats peuvent être utilisés pour initialiser des calculs atmosphériques sur de plus larges domaines, afin de modéliser les réactions entre chlore actif et ozone et de quantifier l'appauvrissement en ozone dans le panache. / Rockets have an impact on the chemical composition of the atmosphere, and particularly on stratospheric ozone. Among all types of propulsion, Solid-Rocket Motors (SRMs) have given rise to concerns since their emissions are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to the conversion of hydrogen chloride, a chemical compound emitted in large quantities by ammonium perchlorate based propellants, into active chlorine compounds, which then react with ozone in a destructive catalytic cycle, similar to those responsible for the Antartic "Ozone hole". This conversion occurs in the hot, supersonic exhaust plume, as part of a strong second combustion between chemical species of the plume and air. The objective of this study is to evaluate the active chlorine concentration in the far-field plume of a solid-rocket motor using large-eddy simulations (LES). The gas is injected through the entire nozzle of the SRM and a local time-stepping method based on coupling multi-instances of the fluid solver is used to extend the computational domain up to 400 nozzle exit diameters downstream of the nozzle exit. The methodology is validated for a non-reactive case by analyzing the flow characteristics of the resulting supersonic co-flowing under-expanded jet. Then the chemistry of chlorine is studied off-line using a complex chemistry solver applied on trajectories extracted from the LES time-averaged flow-field. Finally, the online chemistry is analyzed by means of the multi-species version of the LES solver using a reduced chemical scheme. To the best of our knowledge, this represents one of the first LES of a reactive supersonic jet, including nozzle geometry, performed over such a long computational domain. By capturing the effect of mixing of the exhaust plume with ambient air and the interactions between turbulence and combustion, LES offers an evaluation of chemical species distribution in the SRM plume with an unprecedented accuracy. These results can be used to initialize atmospheric simulations on larger domains, in order to model the chemical reactions between active chlorine and ozone and to quantify the ozone loss in SRM plumes.
|
15 |
A high-intensity cold atom sourceBorysow, Michael 27 September 2012 (has links)
Presented in this thesis is the design and characterization of a new, high-flux source of cold atoms based on continuous, post-nozzle injection of lithium atoms into a cryogenic, supersonic helium jet. To date, experiments have been performed with lithium injection fractions up to [approximately equal to]10⁻⁶, where fluorescence spectroscopy reveals successful capture and thermalization of lithium atoms within the helium jet. The observed lithium beam copropagates with the helium jet and has a temperature of less than 10 mK, a brightness of 1.1x10¹⁹ m⁻² s⁻¹ sr⁻¹, and a brilliance of 3.1x10²⁰ m⁻² s⁻¹ sr⁻¹. Lithium atoms contained within a solid angle of [approximately equal to]0.018 sr are good candidates for future magnetic extraction. This results in a potentially capturable lithium flux of 1.1x10¹² s⁻¹, comparable to the existing record for a cold atomic beam. Also presented is preliminary data showing lithium fluorescence nearly 1 m downstream, demonstrating that the cold lithium beam can be successfully extracted from the seeding region. Numerical simulations reproduce capture efficiency to within 50%, suggesting that the process is well understood. We believe that successful seeding may be possible at a fraction up to 10⁻⁴. Seeding at this rate could produce an atomic beam with a flux as high as 1.3x10¹⁴ s⁻¹ at a phase-space density up to 1.6x10⁻⁷, corresponding to brightness and brilliance of order 10²² m⁻² s⁻¹ sr⁻¹ and 10²⁴ m⁻² s⁻¹ sr⁻¹ , respectively. If this novel cooling method performs as well at higher incident lithium flux, it could serve as a pump source and pave the way to the realization of the first truly continuous atom laser. / text
|
16 |
Etude du transfert de protons dans les systèmes moléculaires / Proton transfer along molecular wiresEsteves López, Natalia 06 July 2017 (has links)
Une des meilleures sources d’énergie verte serait d’être capable de casser une molécule d’eau à partir du rayonnement visible fourni par le soleil, afin de générer du H$_2$. L’eau présente le don d’ubiquité sur terre puisqu’elle est présente, sous ses trois phases, dans les océans, la terre et l’atmosphère. Cependant, une énergie de 6.66 eV (VUV) est nécessaire pour rompre directement une des liaisons covalentes de l’eau. Dans ce travail, nous montrons qu’il est possible de dissocier l’eau si celle-ci est associée à un catalyseur photosensible de nature organique, dont les prototypes absorbent dans l’UV, comme la Pyridine (Py). Un récent travail théorique prédit que la Py peut jouer le rôle de ce photocatalyseur, suivant la réaction : Py-H$_2$O + h$\nu_1 \to$ Py*-H$_2$O $\to$ PyH$\bullet$ + OH$\bullet$Pour tester ce modèle théorique nous avons étudié le complexe Py-eau isolé dans un cluster moléculaire froid. Nous avons caractérisé la spectroscopie électronique du PyH$\bullet$ en phase gazeuse et nous avons mis en évidence cette réaction de photodissociation par irradiation UV de clusters Py-(H$_2$O)$_n$. Nous avons aussi testé ce système en matrices cryogéniques pour évaluer l’effet de la solvatation solide. La dernière étape du processus, la régénération du photocatalyseur par absorption d’un deuxième photon UV (PyH$\bullet$ + h$\nu \to$ Py + H$\bullet$) à été aussi prouvé. Il semblerait que seuls les radicaux PyH$\bullet$ chauds soient capables d’engendrer cette dernière réaction.A l’heure actuelle, nous explorons de nouveaux systèmes moléculaires prototypes susceptibles de conduire au même phénomène. / A major challenge to generate green energy from sunlight would be to split water which is a ubiquitous molecule to produce H$_2$. However VUV light (6.66 eV) is needed to dissociate the H-OH covalent bond. In this work we will show that it is possible to dissociate water via photo-sensitisation with UVC light, using a simple organic catalyst.Recently, ab-initio calculations predict that pyridine (Py) can act as a photo-catalyst to split water by absorption of a UV photon, following the reaction:Py-H$_2$O + h$\nu_1 \to$ Py*-H$_2$O $\to$ PyH$\bullet$ + OH$\bullet$ To test this prediction, we studied the Py-H$_2$O complex in isolated cold molecular cluster and the system trapped in cryogenic matrices. We characterized the electronic spectroscopy of the PyH$\bullet$ in the gas phase and we evidenced the reaction through UV excitation of Py-(H$_2$O) $_n$ clusters. We have evidenced that the reaction leads PyH$\bullet$ as photoproduct of the reaction. We also evidenced that the surrounding conditions play an important role in the reaction.We have demonstrated that the UV excitation of Py-water clusters leads to the formation of PyH$\bullet$, thus we have evidenced the water splitting reaction. The last step of the process, that is the regeneration of the catalyst by absorption of a second UV photon (PyH$\bullet$ + h$\nu \to$ Py + H$\bullet$) has been studied and it seems that only hot PyH$\bullet$ molecules are able to follow this channel. In the present, we are studying other aromatic molecules which are expected to lead the photochemical dissociation of water.
|
17 |
Conformational spectroscopy of flexible chain molecules near the folding limitBocklitz, Sebastian 30 November 2017 (has links)
No description available.
|
18 |
Investigation of acetylene-containing van der Waals complexes using high-level ab initio calculations and ultra-sensitive absorption experimentsLauzin, Clément 01 February 2012 (has links)
Les complexes de van der Waals sont des entités constituées de différentes molécules liées par des interactions faibles (~kJ/mol). Ces agrégats présentent une réactivité particulière et jouent un rôle essentiel dans les phénomènes de solvatation et nucléation. Des moyens expérimentaux et théoriques pour étudier les complexes de van der Waals et en particulier ceux contenant de l’acétylène ont donc été développés dans ce travail. Nous avons utilisé et amélioré un montage expérimental appelé FANTASIO+ (Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn). Ce montage, composé d’un jet supersonique et d’un spectromètre à temps de déclin permet la production et la détection de ce genre de complexes. Le jet supersonique consiste en une détente adiabatique d’un gaz et assure par refroidissement à quelques Kelvins la production de complexes. La spectrométrie à temps de déclin mesure l’absorption d’un laser infra-rouge par ces molécules cibles assurant ainsi leur détection. <p>Une diode laser nous a permis d’exciter deux fois l’étirement CH de l’acétylène. Nous avons pu détecter et analyser le spectre de vibration-rotation des complexes suivants :C2H2-Ne, C2H2-Ar, C2H2-Kr, C2H2-CO2, C2H2-N2O, et C2H2-C2H2. La molécule C2H2-CO2 et des isotopologues de C2H2-C2H2 ont également été étudiés à plus basse énergie durant un séjour à Calgary au Canada. Nos études ont démontré que ces complexes restaient liés à une énergie pouvant aller jusqu’à 130 fois l’énergie d’interaction entre les deux monomères. L’obtention de données à haute résolution spectrale permet également d’obtenir des données de références pour la validation de modèles théoriques et la planétologie. En particulier, la première détection de C2H2-Kr permettra peut-être une future observation de cet agrégat dans des atmosphères planétaires comme par exemple Titan. <p>Pour avoir une approche globale de ces systèmes nous nous sommes tournés vers les outils de la chimie quantique pour caractériser l’interaction entre les entités du complexe. Des tests méthodologiques approfondis nous ont permis d’évaluer avec exactitude les surfaces d’énergie potentielle intermoléculaire des complexes contenant une molécule d’acétylène et un atome de krypton ou de xénon. <p><p>van der Waals complexes are molecular systems in which the units or molecules are held together by weak interactions (~kJ/mol). These complexes present a peculiar reactivity and play a critical role in solvation and nucleation. Theoretical and experimental means were developed in this work to study such systems and in particular, complexes containing acetylene. In the context of this work the FANTASIO+ (Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn) experimental set-up was used and improved. This set-up, composed of a supersonic expansion and a cavity ring-down spectrometer, provides a way to produce and detect these complexes. The supersonic expansion is an adiabatic expansion which produces the complexes by cooling of the gas to few Kelvin. The CRDS set-up detect those complexes by infra-red laser absorption.<p>Using laser diode to doubly excite the CH stretch of acetylene, one then succeeded to observe and analyze the ro-vibrational spectra of the following complexes: C2H2-Ne, C2H2-Ar, C2H2-Kr, C2H2-CO2, C2H2-N2O, et C2H2-C2H2. The C2H2-CO2 and isotopologues of C2H2-C2H2 were also studied at lower energy during a three months stay in Calgary, Canada. Our studies demonstrated that complexes stayed bound even at an energy 130 times higher than the energy holding the entities together. The high resolution data obtained during this work is also useful to validate theoretical models and planetology. The first detection of the C2H2-Kr complex, in particular, could allow its future detection in other atmospheres, i.e. on Titan.<p>To have a global approach to these systems, the quantum chemistry tools were used to characterize the interaction between the partners of the complexes. Numerous methodological tests allowed us to accurately evaluate the intermolecular potential energy surfaces of the complexes containing an acetylene molecule and a krypton or a xenon atom. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
19 |
Schwingungsspektroskopische Untersuchungen zur Chiralitätserkennung und Torsionsdynamik bei Alkoholen / Investigation of Chirality Recognition and Torsional Dynamics in Alcohols by Vibrational SpectroscopyMedel, Robert 09 June 2020 (has links)
No description available.
|
20 |
Design Study of Moderate to High Aspect Ratio Rectangular Supersonic Exhaust Systems: Flow, Acoustics, and Fluid-Structure InteractionsDesign Study of Moderate to High Aspect Ratio Rectangular Supersonic Exhaust Systems: Flow, Acoustics, and Fluid-Structure InteractionsMallaMalla, BhupatindraBhupatindra January 2021 (has links)
No description available.
|
Page generated in 0.102 seconds