• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 406
  • 65
  • 43
  • 27
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 290
  • 226
  • 213
  • 151
  • 138
  • 132
  • 105
  • 98
  • 97
  • 91
  • 83
  • 80
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Reweighted Discriminative Optimization for least-squares problems with point cloud registration

Zhao, Y., Tang, W., Feng, J., Wan, Tao Ruan, Xi, L. 26 March 2022 (has links)
Yes / Optimization plays a pivotal role in computer graphics and vision. Learning-based optimization algorithms have emerged as a powerful optimization technique for solving problems with robustness and accuracy because it learns gradients from data without calculating the Jacobian and Hessian matrices. The key aspect of the algorithms is the least-squares method, which formulates a general parametrized model of unconstrained optimizations and makes a residual vector approach to zeros to approximate a solution. The method may suffer from undesirable local optima for many applications, especially for point cloud registration, where each element of transformation vectors has a different impact on registration. In this paper, Reweighted Discriminative Optimization (RDO) method is proposed. By assigning different weights to components of the parameter vector, RDO explores the impact of each component and the asymmetrical contributions of the components on fitting results. The weights of parameter vectors are adjusted according to the characteristics of the mean square error of fitting results over the parameter vector space at per iteration. Theoretical analysis for the convergence of RDO is provided, and the benefits of RDO are demonstrated with tasks of 3D point cloud registrations and multi-views stitching. The experimental results show that RDO outperforms state-of-the-art registration methods in terms of accuracy and robustness to perturbations and achieves further improvement than non-weighting learning-based optimization.
212

Harnessing the Power of Self-Training for Gaze Point Estimation in Dual Camera Transportation Datasets

Bhagat, Hirva Alpesh 14 June 2023 (has links)
This thesis proposes a novel approach for efficiently estimating gaze points in dual camera transportation datasets. Traditional methods for gaze point estimation are dependent on large amounts of labeled data, which can be both expensive and time-consuming to collect. Additionally, alignment and calibration of the two camera views present significant challenges. To overcome these limitations, this thesis investigates the use of self-learning techniques such as semi-supervised learning and self-training, which can reduce the need for labeled data while maintaining high accuracy. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field. / Master of Science / This thesis presents a new method for efficiently estimating the gaze point of drivers while driving, which is crucial for understanding driver behavior and improving transportation safety. Traditional methods require a lot of labeled data, which can be time-consuming and expensive to obtain. This thesis proposes a self-learning approach that can learn from both labeled and unlabeled data, reducing the need for labeled data while maintaining high accuracy. By training the model on labeled data and using its own estimations on unlabeled data to improve its performance, the proposed approach can adapt to new scenarios and improve its accuracy over time. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. Overall, this approach offers a more efficient and cost-effective solution that can potentially help improve transportation safety by providing a better understanding of driver behavior. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field.
213

Learning with Constraint-Based Weak Supervision

Arachie, Chidubem Gibson 28 April 2022 (has links)
Recent adaptations of machine learning models in many businesses has underscored the need for quality training data. Typically, training supervised machine learning systems involves using large amounts of human-annotated data. Labeling data is expensive and can be a limiting factor in using machine learning models. To enable continued integration of machine learning systems in businesses and also easy access by users, researchers have proposed several alternatives to supervised learning. Weak supervision is one such alternative. Weak supervision or weakly supervised learning involves using noisy labels (weak signals of the data) from multiple sources to train machine learning systems. A weak supervision model aggregates multiple noisy label sources called weak signals in order to produce probabilistic labels for the data. The main allure of weak supervision is that it provides a cheap yet effective substitute for supervised learning without need for labeled data. The key challenge in training weakly supervised machine learning models is that the weak supervision leaves ambiguity about the possible true labelings of the data. In this dissertation, we aim to address the challenge associated with training weakly supervised learning models by developing new weak supervision methods. Our work focuses on learning with constraint-based weak supervision algorithms. Firstly, we will propose an adversarial labeling approach for weak supervision. In this method, the adversary chooses the labels for the data and a model learns by minimising the error made by the adversarial model. Secondly, we will propose a simple constrained based approach that minimises a quadratic objective function in order to solve for the labels of the data. Next we explain the notion of data consistency for weak supervision and propose a data consistent method for weakly supervised learning. This approach combines weak supervision labels with features of the training data to make the learned labels consistent with the data. Lastly, we use this data consistent approach to propose a general approach for improving the performance of weak supervision models. In this method, we combine weak supervision with active learning in order to generate a model that outperforms each individual approach using only a handful of labeled data. For each algorithm we propose, we report extensive empirical validation of it by testing it on standard text and image classification datasets. We compare each approach against baseline and state-of-the-art methods and show that in most cases we match or outperform the methods we compare against. We report significant gains of our method on both binary and multi-class classification tasks. / Doctor of Philosophy / Machine learning models learn to make predictions from data. In supervised learning, a machine learning model is fed data and corresponding labels for the data so that the model can learn to predict labels for new unseen test data. Curation of large fully supervised datasets is expensive and time consuming since it involves subject matter experts providing labels for each individual data example. The cost of collecting labels has become one of the major roadblocks for training machine learning models. An alternative to supervised training of machine learning models is weak supervision. Weak supervision or weakly supervised learning trains with cheap, and easy to define signals that noisily label the data. We refer to these signals as weak signals. A weak supervision model combines various weak signals to produce training labels for the data. The key challenge in weak supervision is how to combine the different weak signals while navigating misleading correlations in their errors. In this dissertation, we propose several algorithms for weakly supervised learning. We classify our methods as constraint-based weak supervision since weak supervision is provided as constraints to our algorithms. We use experiments on different text and image classification datasets to show that our methods are effective and outperform competing methods that we compare against. Lastly, we propose a general framework for improving the performance of weak supervision models by incorporating a few labeled data. With this method we are able to close the gap to supervised learning without the need for labeling all the data examples.
214

Going Deeper with Images and Natural Language

Ma, Yufeng 29 March 2019 (has links)
One aim in the area of artificial intelligence (AI) is to develop a smart agent with high intelligence that is able to perceive and understand the complex visual environment around us. More ambitiously, it should be able to interact with us about its surroundings in natural languages. Thanks to the progress made in deep learning, we've seen huge breakthroughs towards this goal over the last few years. The developments have been extremely rapid in visual recognition, in which machines now can categorize images into multiple classes, and detect various objects within an image, with an ability that is competitive with or even surpasses that of humans. Meanwhile, we also have witnessed similar strides in natural language processing (NLP). It is quite often for us to see that now computers are able to almost perfectly do text classification, machine translation, etc. However, despite much inspiring progress, most of the achievements made are still within one domain, not handling inter-domain situations. The interaction between the visual and textual areas is still quite limited, although there has been progress in image captioning, visual question answering, etc. In this dissertation, we design models and algorithms that enable us to build in-depth connections between images and natural languages, which help us to better understand their inner structures. In particular, first we study how to make machines generate image descriptions that are indistinguishable from ones expressed by humans, which as a result also achieved better quantitative evaluation performance. Second, we devise a novel algorithm for measuring review congruence, which takes an image and review text as input and quantifies the relevance of each sentence to the image. The whole model is trained without any supervised ground truth labels. Finally, we propose a brand new AI task called Image Aspect Mining, to detect visual aspects in images and identify aspect level rating within the review context. On the theoretical side, this research contributes to multiple research areas in Computer Vision (CV), Natural Language Processing (NLP), interactions between CVandNLP, and Deep Learning. Regarding impact, these techniques will benefit related users such as the visually impaired, customers reading reviews, merchants, and AI researchers in general. / Doctor of Philosophy / One aim in the area of artificial intelligence (AI) is to develop a smart agent with high intelligence that is able to perceive and understand the complex visual environment around us. More ambitiously, it should be able to interact with us about its surroundings in natural languages. Thanks to the progress made in deep learning, we’ve seen huge breakthroughs towards this goal over the last few years. The developments have been extremely rapid in visual recognition, in which machines now can categorize images into multiple classes, and detect various objects within an image, with an ability that is competitive with or even surpasses that of humans. Meanwhile, we also have witnessed similar strides in natural language processing (NLP). It is quite often for us to see that now computers are able to almost perfectly do text classification, machine translation, etc. However, despite much inspiring progress, most of the achievements made are still within one domain, not handling inter-domain situations. The interaction between the visual and textual areas is still quite limited, although there has been progress in image captioning, visual question answering, etc. In this dissertation, we design models and algorithms that enable us to build in-depth connections between images and natural languages, which help us to better understand their inner structures. In particular, first we study how to make machines generate image descriptions that are indistinguishable from ones expressed by humans, which as a result also achieved better quantitative evaluation performance. Second, we devise a novel algorithm for measuring review congruence, which takes an image and review text as input and quantifies the relevance of each sentence to the image. The whole model is trained without any supervised ground truth labels. Finally, we propose a brand new AI task called Image Aspect Mining, to detect visual aspects in images and identify aspect level rating within the review context. On the theoretical side, this research contributes to multiple research areas in Computer Vision (CV), Natural Language Processing (NLP), interactions between CV&NLP, and Deep Learning. Regarding impact, these techniques will benefit related users such as the visually impaired, customers reading reviews, merchants, and AI researchers in general.
215

Towards label-efficient deep learning for medical image analysis

Sun, Li 11 September 2024 (has links)
Deep learning methods have achieved state-of-the-art performance in various tasks of medical image analysis. However, the success relies heavily on the expensive and time-consuming collection of large quantities of labeled data, which is not always available. This dissertation investigates the use of self-supervised and generative methods to enhance the label efficiency of deep learning models for 3D medical image analysis. Unlike natural images, medical images contain consistent anatomical contexts specific to the domain, which can be exploited as self-supervision signals to pre-train the model. Furthermore, generative methods can be utilized to synthesize additional samples, thereby increasing sample diversity. In the first part of the dissertation, we introduce self-supervised learning frameworks that learn anatomy-aware and disease-related representation. In order to learn disease-related representation, we propose two domain-specific contrasting strategies that leverage anatomical similarity across patients to create hard negative samples that incentivize learning fine-grained pathological features. In order to learn anatomy-sensitive representation, we develop a novel 3D convolutional layer with kernels that are conditionally parameterized based on the anatomical locations. We perform extensive experiments on large-scale datasets of CT scans, which show that our method improves the performance of many downstream tasks. In the second part of the dissertation, we introduce generative models capable of synthesizing high-resolution, anatomy-guided 3D medical images. Current generative models are typically limited to low-resolution outputs due to memory constraints, despite clinicians' need for high-resolution details in diagnoses. To overcome this, we present a hierarchical architecture that efficiently manages memory demands, enabling the generation of high-resolution images. In addition, diffusion-based generative models are becoming more prevalent in medical imaging. However, existing state-of-the-art methods often under-utilize the extensive information found in radiology reports and anatomical structures. To address these limitations, we propose a text-guided 3D image diffusion model that preserves anatomical details. We conduct experiments on downstream tasks and blind evaluation by radiologists, which demonstrate the clinical value of our proposed methodologies.
216

Federated Learning for Reinforcement Learning and Control

Wang, Han January 2024 (has links)
Federated learning (FL), a novel distributed learning paradigm, has attracted significant attention in the past few years. Federated algorithms take a client/server computation model, and provide scope to train large-scale machine learning models over an edge-based distributed computing architecture. In the paradigm of FL, models are trained collaboratively under the coordination of a central server while storing data locally on the edge/clients. This thesis addresses critical challenges in FL, focusing on supervised learning, reinforcement learning (RL), control systems, and personalized system identification. By developing robust, efficient algorithms, our research enhances FL’s applicability across diverse, real-world environments characterized by data heterogeneity and communication constraints. In the first part, we introduce an algorithm for supervised FL to address the challenges posed by heterogeneous client data, ensuring stable convergence and effective learning, even with partial client participation. In the federated reinforcement learning (FRL) part, we develop algorithms that leverage similarities across heterogeneous environments to improve sample efficiency and accelerate policy learning. Our setup involves 𝑁 agents interacting with environments that share the same state and action space but differ in their reward functions and state transition kernels. Through rigorous theoretical analysis, we show that information exchange via FL can expedite both policy evaluation and optimization in decentralized, multi-agent settings, enabling faster, more efficient, and robust learning. Extending FL into control systems, we propose the 𝙵𝚎𝚍𝙻𝚀𝚁 algorithm, which enables agents with unknown but similar dynamics to collaboratively learn stabilizing policies, addressing the unique demands of closed-loop stability in federated control. Our method overcomes numerous technical challenges, such as heterogeneity in the agents’dynamics, multiple local updates, and stability concerns. We show that our proposed algorithm 𝙵𝚎𝚍𝙻𝚀𝚁 produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent’s local optimal policy. Furthermore, we prove that when learning each agent’s optimal policy, 𝙵𝚎𝚍𝙻𝚀𝚁 achieves a sample complexity reduction proportional to the number of agents 𝑀 in a low-heterogeneity regime, compared to the single-agent setting. In the last part, we explore techniques for personalized system identification in FL, allowing clients to obtain customized models suited to their individual environments. We consider the problem of learning linear system models by observing multiple trajectories from systems with differing dynamics. This framework encompasses a collaborative scenario where several systems seeking to estimate their dynamics are partitioned into clusters according to system similarity. Thus, the systems within the same cluster can benefit from the observations made by the others. Considering this framework, we present an algorithm where each system alternately estimates its cluster identity and performs an estimation of its dynamics. This is then aggregated to update the model of each cluster. We show that under mild assumptions, our algorithm correctly estimates the cluster identities and achieves an 𝜀-approximate solution with a sample complexity that scales inversely with the number of systems in the cluster, thus facilitating a more efficient and personalized system identification.
217

<b>MOUSE SOCIAL BEHAVIOR CLASSIFICATION USING SELF-SUPERVISED LEARNING TECHNIQUES</b>

Sruthi Sundharram (18437772) 27 April 2024 (has links)
<p dir="ltr">Traditional methods of behavior classification on videos of mice often rely on manually annotated datasets, which can be labor-intensive and resource-demanding to create. This research aims to address the challenges of behavior classification in mouse studies by leveraging an algorithmic framework employing self-supervised learning techniques capable of analyzing unlabeled datasets. This research seeks to develop a novel approach that eliminates the need for extensive manual annotation, making behavioral analysis more accessible and cost-effective for researchers, especially those in laboratories with limited access to annotated datasets.</p>
218

Exploring adaptation of self-supervised representation learning to histopathology images for liver cancer detection

Jonsson, Markus January 2024 (has links)
This thesis explores adapting self-supervised representation learning to visual domains beyond natural scenes, focusing on medical imaging. The research addresses the central question: “How can self-supervised representation learning be specifically adapted for detecting liver cancer in histopathology images?” The study utilizes the PAIP 2019 dataset for liver cancer segmentation and employs a self-supervised approach based on the VICReg method. The evaluation results demonstrated that the ImageNet-pretrained model achieved superior performance on the test set, with a clipped Jaccard index of 0.7747 at a threshold of 0.65. The VICReg-pretrained model followed closely with a score of 0.7461, while the model initialized with random weights trailed behind at 0.5420. These findings indicate that while ImageNet-pretrained models outperformed VICReg-pretrained models, the latter still captured essential data characteristics, suggesting the potential of self-supervised learning in diverse visual domains. The research attempts to contribute to advancing self-supervised learning in non-natural scenes and provides insights into model pretraining strategies.
219

Self-Supervised Representation Learning for Early Breast Cancer Detection in Mammographic Imaging

Kristofer, Ågren January 2024 (has links)
The proposed master's thesis investigates the adaptability and efficacy of self-supervised representation learning (SSL) in medical image analysis, focusing on Mammographic Imaging to develop robust representation learning models. This research will build upon existing studies in Mammographic Imaging that have utilized contrastive learning and knowledge distillation-based self-supervised methods, focusing on SimCLR (Chen et al 2020) and SimSiam (Chen et al 2020) and evaluate approaches to increase the classification performance in a transfer learning setting. The thesis will critically evaluate and integrate recent advancements in these SSL paradigms (Chhipa 2023, chapter 2), and incorporating additional SSL approaches. The core objective is to enhance robust generalization and label efficiency in medical imaging analysis, contributing to the broader field of AI-driven diagnostic methodologies. The proposed master's thesis will not only extend the current understanding of SSL in medical imaging but also aims to provide actionable insights that could be instrumental in enhancing breast cancer detection methodologies, thereby contributing significantly to the field of medical imaging and cancer research.
220

Estimating Market Risk of Private Real Estate Assets

Widigsson, Eric, Wolf-Watz, Björn January 2024 (has links)
This study aims to estimate the market risk of private real estate assets, specifically examining Swedish real estate companies, and seeks to identify the best model for estimating the quarterly squared return. An important assumption in this study is that private real estate assets are assumed to have the same market risk as publicly traded assets, all else being equal. With this assumption, the studied methods can be applied to publicly traded companies and evaluated based on the realized stock returns of these traded companies.  The study examines two primary techniques for estimating the risk of private real estate assets: desmoothing of appraisal based returns and supervised learning on listed peers. Desmoothing is a technique used to estimate new economic returns from smoothed real estate appraisal returns. The original desmoothing method outlined by Geltner (1991) introduces AR desmoothing and is examined along with the MA desmoothing model presented by Getmansky et al. (2004). Performing these desmoothing techniques yields a new time series of returns that can be utilized in an EWMA (Exponentially Weighted Moving Average) estimation for predicting the squared return of the next quarter. The supervised learning on listed peers, on the other hand, is performed by studying similar listed assets and training the ability to predict the squared return based on explanatory variables representing selected key figures of the companies’ financials. Five supervised learning models are examined: Linear Regression, Lasso Regression, Ridge Regression, Elastic Net Regularization, and Random Forest Regression.  The results show that four out of the five supervised learning models are superior to the desmoothing models. In particular, Random Forest Regression, Ridge Regression, and Lasso Regression yield the best estimates of the quarterly squared return. However, since this study assesses risk over a quarterly time period, the lack of data is significant, affecting the statistical confidence of the results.  Although the superiority of the supervised learning models in terms of predicting the squared return is evident, the results from the desmoothing reveal some interesting properties about the techniques. AR desmoothing reduces the disparity between the sample variance of the stock compared to the original NAV time series, whereas MA desmoothing drastically increases the correlation of the desmoothed returns with the stock returns.

Page generated in 0.1086 seconds