• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 13
  • 13
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 130
  • 130
  • 60
  • 50
  • 31
  • 14
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Nondestructive Evaluation of Asphalt Pavement Joints Using LWD and MASW Tests

du Tertre, Antonin January 2010 (has links)
Longitudinal joints are one of the critical factors that cause premature pavement failure. Poor-quality joints are characterized by a low density and high permeability; which generates surface distresses such as ravelling or longitudinal cracking. Density has been traditionally considered as the primary performance indicator of joint construction. Density measurements consist of taking cores in the field and determining their density in the laboratory. Although this technique provides the most accurate measure of joint density, it is destructive and time consuming. Nuclear and non-nuclear gauges have been used to evaluate the condition of longitudinal joint non-destructively, but did not show good correlation with core density tests. Consequently, agencies are searching for other non-destructive testing (NDT) options for longitudinal joints evaluation. NDT methods have significantly advanced for the evaluation of pavement structural capacity during the past decade. These methods are based either on deflection or wave velocity measurements. The light weight deflectometer (LWD) is increasingly being used in quality control/quality assurance to provide a rapid determination of the surface modulus. Corresponding backcalculation programs are able to determine the moduli of the different pavement layers; these moduli are input parameters for mechanistic-empirical pavement design. In addition, ultrasonic wave-based methods have been studied for pavement condition evaluation but not developed to the point of practical implementation. The multi-channel analysis of surface waves (MASW) consists of using ultrasonic transducers to measure surface wave velocities in pavements and invert for the moduli of the different layers. In this study, both LWD and MASW were used in the laboratory and in the field to assess the condition of longitudinal joints. LWD tests were performed in the field at different distances from the centreline in order to identify variations of the surface modulus. MASW measurements were conducted across the joint to evaluate its effect on wave velocities, frequency content and attenuation parameters. Improved signal processing techniques were used to analyze the data, such as Fourier Transform, windowing, or discrete wavelet transform. Dispersion curves were computed to determine surface wave velocities and identify the nature of the wave modes propagating through the asphalt pavement. Parameters such as peak-to-peak amplitude or the area of the frequency spectrum were used to compute attenuation curves. A self calibrating technique, called Fourier transmission coefficient (FTC), was used to assess the condition of longitudinal joints while eliminating the variability introduced by the source, receivers and coupling system. A critical component of this project consisted of preparing an asphalt slab with a joint in the middle that would be used for testing in the laboratory. The compaction method was calibrated by preparing fourteen asphalt samples. An exponential correlation was determined between the air void content and the compaction effort applied to the mixture. Using this relationship, an asphalt slab was prepared in two stages to create a joint of medium quality. Nuclear density measurements were performed at different locations on the slab and showed a good agreement with the predicted density gradient across the joint. MASW tests were performed on the asphalt slabs using different coupling systems and receivers. The FTC coefficients showed good consistency from one configuration to another. This result indicates that the undesired variability due to the receivers and the coupling system was reduced by the FTC technique. Therefore, the coefficients were representative of the hot mix asphalt (HMA) condition. A comparison of theoretical and experimental dispersion curves indicated that mainly Lamb waves were generated in the asphalt layer. This new result is in contradiction with the common assumption that the response is governed by surface waves. This result is of critical importance for the analysis of the data since MASW tests have been focusing on the analysis of Rayleigh waves. Deflection measurements in the field with the LWD showed that the surface modulus was mostly affected by the base and subgrade moduli, and could not be used to evaluate the condition of the surface course that contains the longitudinal joints. The LWDmod software should be used to differentiate the pavement layers and backcalculate the modulus of the asphalt layer. Testing should be performed using different plate sizes and dropping heights in order to generate different stress levels at the pavement surface and optimize the accuracy of the backcalculation. Finally, master curves were computed using a predictive equation based on mix design specifications. Moduli measured at different frequencies of excitation with the two NDT techniques were shifted to a design frequency of 25 Hz. Design moduli measured in the field and in the laboratory with the seismic method were in good agreement (less than 0.2% difference). Moreover, a relatively good agreement was found between the moduli measured with the LWD and the MASW method after shifting to the design frequency. In conclusion, LWD and MASW measurements were representative of HMA condition. However, the condition assessment of medium to good quality joints requires better control of the critical parameters, such as the measurement depth for the LWD, or the frequency content generated by the ultrasonic source and the coupling between the receivers and the asphalt surface for the MASW method.
52

NDT Applications for the Assessment of Asphalt Pavements, Plate Thickness, and Steel-Grout Coupling

Wu, Yen Chieh January 2012 (has links)
Nondestructive testing (NDT) uses different wave propagation modes to evaluate the internal structure of materials, revealing internal damage such as corrosion and fracturing that cannot be detected by traditional methods. Civil infrastructures are considered high priority assets in Ontario and Canada because of their value, high consequence of failure, and the continual influence of aging effects. Unexpected failure of infrastructure not only costs more than planned replacements but also results in increased safety risks. The in-situ condition assessment of civil infrastructure is critical for the successful implementation of maintenance and safety programs. Therefore, reliable nondestructive methods of inspection are required for the implementation of economical and efficient maintenance and asset management programs. Continuing technological developments in data collection, acquisition equipment, and data processing techniques have provided useful applications of nondestructive methods in many engineering fields. Among the many applications, this research study examines three applications of nondestructive testing in civil engineering: (1) condition assessment of construction joints in asphalt pavements, (2) average thickness evaluation of steel pipes, and (3) void and debonding detection in grouted steel tanks. The study on asphalt focuses on the improvement of the coupling system between the transducers and the asphalt surface, and the development of a new data processing technique to reduce user input and increase the reliability of the condition assessment of longitudinal joints. The current wavelet transmission coefficient (WTC) method requires user input, making the automatic data processing difficult. In the WTC method, the coupling between the transducers and the asphalt surface requires the use of epoxy and aluminum plates. This procedure is not practical for testing in-service roads. A new coupling mechanism using polyurethane foam to provide a spring action on the transducers and calibrated weights to generate a compression force was developed and showed good results, reducing the testing time by up to 50%. A new and robust data analysis methodology, called instantaneous transmission coefficient (ITC), is proposed based on measured instantaneous frequencies and damping ratios. The main advantage of the ITC procedure is that it can be performed automatically, reducing user input. A laboratory scale asphalt slab is used to evaluate the new methodology. Results show good agreement between the WTC and ITC measurements for both jointed and joint-free areas. The second study investigates the feasibility of the multichannel analysis of surface waves (MASW) technique for the evaluation of the average wall thickness of steel pipes. Electromagnetic NDT methods, such as the eddy current and the remote field testing, are common tools for thickness measurement of conductive materials. However, these methods give only localized results where measurements are made, making the process time consuming and inaccurate for assessing the full cross-sectional area of the pipe. Lamb waves have been used previously in the evaluation of steel pipes; however, the existing techniques require prior calibration to a theoretical wave mode, and their accuracy decreases with the length of the pipe evaluated due to wave attenuation effects. Preliminary results show the capability of the MASW test for providing reliable thickness information. The measured dispersion curves include information of fundamental modes and the higher modes, providing an improved characterization of the medium. Thicknesses between 3.2 mm and 12.7 mm are tested with an error of less than 2%. The third study explores the detection of voids in a steel tank filled with lightweight grout. A joint analysis of surface waves and Lamb waves is used for void detection and the identification of debonding conditions in a laboratory scale model of a steel tank filled with grout. Different configurations of the MASW method are conducted using an instrumented hammer (large wavelengths, 10 cm < λ < 25 cm) and a 50 kHz piezoelectric transmitter (small wavelengths, 5 cm < λ < 9 cm) as sources. The attenuation coefficient computed from the Fourier spectra of the measured signals indicates that the presence of a void has an effect on the propagation of the wave. The comparison between experimental and theoretical dispersion curves show that mainly Lamb waves are generated during the testing of the steel tank; thus, detecting the debonding conditions between the steel plate and the grout. Lamb modes are used successfully for detecting the presence of a void beneath the steel wall. The laboratory measurements are effective in the detection of the void, showing amplitudes up to 50% higher, likely because the deformation of the wall is attenuated by the grout.
53

Ultrasonic wave propagation in poly(vinyl alcohol) and articular cartilage

Hsu, Hsingching 07 July 2004 (has links)
An ultrasonic nondestructive evaluation (NDE) technique has been developed to characterize the superficial layer of articular cartilage. The technique utilizes the unique properties of surface waves to detect changes in mechanical properties of the surface layer of the test sample. Experiments were performed first on poly(vinyl alcohol) (PVA) hydrogels, a material used to model articular cartilage, to examine repeatability and the ability of wave propagation parameters to reflect changes in material properties. Dynamic shear and compression tests were performed on 20% and 25% PVA by weight hydrogels to examine the difference in material properties. Ultrasonic NDE tests with longitudinal, shear and surface waves were performed on the hydrogels. Wave speeds in the 20% and 25% hydrogels were compared. Results showed that ultrasonic NDE with surface waves was repeatable and the technique was able to detect material property changes in hydrogels. Ultrasonic NDE tests with surface waves were then performed on healthy and damaged bovine articular cartilage. Wave speeds in the healthy cartilage were compared to speeds in enzymatically digested cartilage. Results showed that ultrasonic NDE with surface waves was repeatable and the technique was able to detect material property changes in the superficial layer of articular cartilage. Findings suggest that the technique has potential to be a tool in diagnosing diseases involving cartilage degeneration, such as osteoarthritis.
54

Evaluation of crack depth in concrete using non-contact surface wave transmission measurement

Kee, Seong-Hoon 01 June 2011 (has links)
The purpose of this study is to develop a non-contact air-coupled NDT method to identify and characterize surface-breaking cracks in concrete structures using surface wave transmission measurements. It has been found that the surface wave transmission (SWT) across a surface-breaking crack is related to the crack depth. However, inconsistence was noticed in surface wave transmission measurements. In this dissertation, the author first summarized limitations of the current SWT method for application to concrete structures, which include inconsistent sensor coupling, near-field effect of sensors, effects of crack width, external loading effect on surface wave transmission coefficient, and lack of a repeatable source. In this dissertation, the author attempts to find solutions to the aforementioned problems. First, non-contact air-coupled sensors were applied to the SWT method to reduce experimental errors caused by inconsistent coupling condition of conventional contact sensors. Air-coupled sensing enables reliable and consistent results, and significantly improves test-speed. Results from laboratory and field tests demonstrate effectiveness of air-coupled sensors. Second, appropriate sensor-to-source configurations are proposed to reduce undesirable effects: (i) the near-field effect of sensors around a crack, and (ii) contribution of multiple modes in a plate-like structure with a finite thickness. Near-scattering of surface waves interacting with a surface-breaking crack was investigated using numerical simulations (finite element method) and experimental studies over a wide range of the normalized crack depth (h/λ: crack depth normalized by wavelength of surface waves) and the normalized frequency-thickness ratio (f-H/CR: frequency-thick normalized by Rayleigh wave speed). Third, effects of external loadings on transmission coefficient of surface waves in concrete were investigated through a series of experimental studies. In the research, variation of the transmission coefficient is presented as a function of crack mouth opening displacement (CMOD). This provides a guideline on minimum CMOD to which the SWT method can be reasonably applied. In addition, the author experimentally demonstrates that using low-cost piezoceramic sensors is effective in generating consistent stress waves in concrete. Finally, the author demonstrates that the air-coupled SWT method developed in this study is effective for in-situ estimates of a surface-breaking crack in large concrete structures. / text
55

Nondestructive Evaluation of Asphalt Pavement Joints Using LWD and MASW Tests

du Tertre, Antonin January 2010 (has links)
Longitudinal joints are one of the critical factors that cause premature pavement failure. Poor-quality joints are characterized by a low density and high permeability; which generates surface distresses such as ravelling or longitudinal cracking. Density has been traditionally considered as the primary performance indicator of joint construction. Density measurements consist of taking cores in the field and determining their density in the laboratory. Although this technique provides the most accurate measure of joint density, it is destructive and time consuming. Nuclear and non-nuclear gauges have been used to evaluate the condition of longitudinal joint non-destructively, but did not show good correlation with core density tests. Consequently, agencies are searching for other non-destructive testing (NDT) options for longitudinal joints evaluation. NDT methods have significantly advanced for the evaluation of pavement structural capacity during the past decade. These methods are based either on deflection or wave velocity measurements. The light weight deflectometer (LWD) is increasingly being used in quality control/quality assurance to provide a rapid determination of the surface modulus. Corresponding backcalculation programs are able to determine the moduli of the different pavement layers; these moduli are input parameters for mechanistic-empirical pavement design. In addition, ultrasonic wave-based methods have been studied for pavement condition evaluation but not developed to the point of practical implementation. The multi-channel analysis of surface waves (MASW) consists of using ultrasonic transducers to measure surface wave velocities in pavements and invert for the moduli of the different layers. In this study, both LWD and MASW were used in the laboratory and in the field to assess the condition of longitudinal joints. LWD tests were performed in the field at different distances from the centreline in order to identify variations of the surface modulus. MASW measurements were conducted across the joint to evaluate its effect on wave velocities, frequency content and attenuation parameters. Improved signal processing techniques were used to analyze the data, such as Fourier Transform, windowing, or discrete wavelet transform. Dispersion curves were computed to determine surface wave velocities and identify the nature of the wave modes propagating through the asphalt pavement. Parameters such as peak-to-peak amplitude or the area of the frequency spectrum were used to compute attenuation curves. A self calibrating technique, called Fourier transmission coefficient (FTC), was used to assess the condition of longitudinal joints while eliminating the variability introduced by the source, receivers and coupling system. A critical component of this project consisted of preparing an asphalt slab with a joint in the middle that would be used for testing in the laboratory. The compaction method was calibrated by preparing fourteen asphalt samples. An exponential correlation was determined between the air void content and the compaction effort applied to the mixture. Using this relationship, an asphalt slab was prepared in two stages to create a joint of medium quality. Nuclear density measurements were performed at different locations on the slab and showed a good agreement with the predicted density gradient across the joint. MASW tests were performed on the asphalt slabs using different coupling systems and receivers. The FTC coefficients showed good consistency from one configuration to another. This result indicates that the undesired variability due to the receivers and the coupling system was reduced by the FTC technique. Therefore, the coefficients were representative of the hot mix asphalt (HMA) condition. A comparison of theoretical and experimental dispersion curves indicated that mainly Lamb waves were generated in the asphalt layer. This new result is in contradiction with the common assumption that the response is governed by surface waves. This result is of critical importance for the analysis of the data since MASW tests have been focusing on the analysis of Rayleigh waves. Deflection measurements in the field with the LWD showed that the surface modulus was mostly affected by the base and subgrade moduli, and could not be used to evaluate the condition of the surface course that contains the longitudinal joints. The LWDmod software should be used to differentiate the pavement layers and backcalculate the modulus of the asphalt layer. Testing should be performed using different plate sizes and dropping heights in order to generate different stress levels at the pavement surface and optimize the accuracy of the backcalculation. Finally, master curves were computed using a predictive equation based on mix design specifications. Moduli measured at different frequencies of excitation with the two NDT techniques were shifted to a design frequency of 25 Hz. Design moduli measured in the field and in the laboratory with the seismic method were in good agreement (less than 0.2% difference). Moreover, a relatively good agreement was found between the moduli measured with the LWD and the MASW method after shifting to the design frequency. In conclusion, LWD and MASW measurements were representative of HMA condition. However, the condition assessment of medium to good quality joints requires better control of the critical parameters, such as the measurement depth for the LWD, or the frequency content generated by the ultrasonic source and the coupling between the receivers and the asphalt surface for the MASW method.
56

Characterization of the Reflection and Dispersion Properties of 'Mushroom'-related Structures and their Applications to Antennas

Raza, Shahzad 15 August 2012 (has links)
The conventional mushroom-like Sievenpiper structure is re-visited in this thesis and a relationship is established between the dispersion and reflection phase characteristics of the structure. It is shown that the reflection phase frequency at which the structure behaves as a Perfect Magnetic Conductor (PMC) can be predicted for varying angles of incidence from the modal distribution in the dispersion diagrams and corresponds to the supported leaky modes within the light cone. A methodology to independently tune the location of the PMC frequency point with respect to the surface wave band-gap location is then presented. The influence of having said PMC frequency point located inside or outside the surface wave band-gap on a dipole radiation pattern is then studied numerically. It is demonstrated that the antenna exhibits a higher gain when the PMC frequency and band-gap coincide versus when they are separated. Two design cases are then presented for when the aforementioned properties coincide and are separated and a gain improvement of 1.2 dB is measured for the former case.
57

Characterization of the Reflection and Dispersion Properties of 'Mushroom'-related Structures and their Applications to Antennas

Raza, Shahzad 15 August 2012 (has links)
The conventional mushroom-like Sievenpiper structure is re-visited in this thesis and a relationship is established between the dispersion and reflection phase characteristics of the structure. It is shown that the reflection phase frequency at which the structure behaves as a Perfect Magnetic Conductor (PMC) can be predicted for varying angles of incidence from the modal distribution in the dispersion diagrams and corresponds to the supported leaky modes within the light cone. A methodology to independently tune the location of the PMC frequency point with respect to the surface wave band-gap location is then presented. The influence of having said PMC frequency point located inside or outside the surface wave band-gap on a dipole radiation pattern is then studied numerically. It is demonstrated that the antenna exhibits a higher gain when the PMC frequency and band-gap coincide versus when they are separated. Two design cases are then presented for when the aforementioned properties coincide and are separated and a gain improvement of 1.2 dB is measured for the former case.
58

NDT Applications for the Assessment of Asphalt Pavements, Plate Thickness, and Steel-Grout Coupling

Wu, Yen Chieh January 2012 (has links)
Nondestructive testing (NDT) uses different wave propagation modes to evaluate the internal structure of materials, revealing internal damage such as corrosion and fracturing that cannot be detected by traditional methods. Civil infrastructures are considered high priority assets in Ontario and Canada because of their value, high consequence of failure, and the continual influence of aging effects. Unexpected failure of infrastructure not only costs more than planned replacements but also results in increased safety risks. The in-situ condition assessment of civil infrastructure is critical for the successful implementation of maintenance and safety programs. Therefore, reliable nondestructive methods of inspection are required for the implementation of economical and efficient maintenance and asset management programs. Continuing technological developments in data collection, acquisition equipment, and data processing techniques have provided useful applications of nondestructive methods in many engineering fields. Among the many applications, this research study examines three applications of nondestructive testing in civil engineering: (1) condition assessment of construction joints in asphalt pavements, (2) average thickness evaluation of steel pipes, and (3) void and debonding detection in grouted steel tanks. The study on asphalt focuses on the improvement of the coupling system between the transducers and the asphalt surface, and the development of a new data processing technique to reduce user input and increase the reliability of the condition assessment of longitudinal joints. The current wavelet transmission coefficient (WTC) method requires user input, making the automatic data processing difficult. In the WTC method, the coupling between the transducers and the asphalt surface requires the use of epoxy and aluminum plates. This procedure is not practical for testing in-service roads. A new coupling mechanism using polyurethane foam to provide a spring action on the transducers and calibrated weights to generate a compression force was developed and showed good results, reducing the testing time by up to 50%. A new and robust data analysis methodology, called instantaneous transmission coefficient (ITC), is proposed based on measured instantaneous frequencies and damping ratios. The main advantage of the ITC procedure is that it can be performed automatically, reducing user input. A laboratory scale asphalt slab is used to evaluate the new methodology. Results show good agreement between the WTC and ITC measurements for both jointed and joint-free areas. The second study investigates the feasibility of the multichannel analysis of surface waves (MASW) technique for the evaluation of the average wall thickness of steel pipes. Electromagnetic NDT methods, such as the eddy current and the remote field testing, are common tools for thickness measurement of conductive materials. However, these methods give only localized results where measurements are made, making the process time consuming and inaccurate for assessing the full cross-sectional area of the pipe. Lamb waves have been used previously in the evaluation of steel pipes; however, the existing techniques require prior calibration to a theoretical wave mode, and their accuracy decreases with the length of the pipe evaluated due to wave attenuation effects. Preliminary results show the capability of the MASW test for providing reliable thickness information. The measured dispersion curves include information of fundamental modes and the higher modes, providing an improved characterization of the medium. Thicknesses between 3.2 mm and 12.7 mm are tested with an error of less than 2%. The third study explores the detection of voids in a steel tank filled with lightweight grout. A joint analysis of surface waves and Lamb waves is used for void detection and the identification of debonding conditions in a laboratory scale model of a steel tank filled with grout. Different configurations of the MASW method are conducted using an instrumented hammer (large wavelengths, 10 cm < λ < 25 cm) and a 50 kHz piezoelectric transmitter (small wavelengths, 5 cm < λ < 9 cm) as sources. The attenuation coefficient computed from the Fourier spectra of the measured signals indicates that the presence of a void has an effect on the propagation of the wave. The comparison between experimental and theoretical dispersion curves show that mainly Lamb waves are generated during the testing of the steel tank; thus, detecting the debonding conditions between the steel plate and the grout. Lamb modes are used successfully for detecting the presence of a void beneath the steel wall. The laboratory measurements are effective in the detection of the void, showing amplitudes up to 50% higher, likely because the deformation of the wall is attenuated by the grout.
59

Compact Electromagnetic Band-Gap Structures (EBG) and Its Applications in Antenna Systems

Zeng, Jingkun January 2013 (has links)
This dissertation is focused on design of compact electromagnetic magnetic band-gap structures (EBG). Several popular compact techniques are introduced and analyzed with equivalent surface impedance model. A novel compact EBG structure is investigated. Compared to the conventional uniplanar compact photonic band gap (UC-PBG) structure, a size reduction of 64.7% is achieved. A distinctive band gap is observed at 2.45 GHz with around 100 MHz bandwidth and zero reflection phase. Antenna applications of this novel EBG structure, including EBG patch antenna and EBG antenna array, have been presented. Simulation results further verify its characteristic of suppressing surface waves. For the EBG patch antenna, a more focused radiation pattern is obtained compared to a normal patch antenna. For an antenna array, the presence of EBG structure reduces the mutual coupling between the two radiating elements by 6 dB.
60

Excitation of surface waves with piezoelectric layers

Nassar, Abubakr A. (Abubakr Abbas) January 1983 (has links)
The propagation of acoustic plate-mode waves in composite membranes is studied. A computer program has been developed and used to calculate the wave velocity and electromechanical coupling factor in these structures which may consist of any combination of piezoelectric layers with arbitrary orientation and surface metallization. In particular, shear modes (SH) in zinc-oxide and selenium membranes, as well as stiffened-Lamb modes in ZnO membranes and ZnO/Si, ZnO/GaAs composite membranes are studied. / The surface-acoustic-wave propagation in selenium and in selenium layers on tellurium has been extensively studied using an improved computer program. The study shows that surface-wave coupling factors in the range of 0.5 to 1.5% are possible with these structures. The calculated sensitivity of the velocity and coupling factor to errors in material constants shows that an accurate value of the e(,11) constant for selenium is necessary for an accurate estimate of the coupling factor. / A technology for fabricating selenium-tellurium layered structures for SAW propagation has been successfully developed. Measurements on fabricated SAW delay lines were carried out and estimates of the coupling factor and the acoustic attenuation obtained. These measurements, taken together with previously published results, confirm that the published value of e(,11) = 0.32 C/m('2) is too small.

Page generated in 0.0733 seconds