• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 13
  • 13
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 130
  • 130
  • 60
  • 50
  • 31
  • 14
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Planární anténa na EBG substrátu / Patch antenna with EBG substrate

Cepek, Tomáš January 2014 (has links)
The aim of the thesis is to describe EBG substrate and exminate his influence on some types of antennas and choose one of them for realization. In first part this thesis describes the paramaeters of antenna in generall, in the second part is dedicated to introduction with EBG substrate mainly on the surface with the high impedance (HIES). The third part deals with the simulations of microstrip patch antennas with EBG substrate and without EBG substrate. In the last parts was designed and optimized antenna using superstrate.
72

Surface Wave Propagation in a Dielectric Waveguide Loaded with an Anisotropic, Conductive, and Spatially Dispersive Substrate

Andriyas, Tushar 01 May 2009 (has links)
This thesis presents an analytical treatment of surface waves inside a dielectric slab loaded with a conductive and spatially dispersive semiconductor-like substrate. The work is primarily focused on the modelling of the substrate and getting the field solutions out from the Helmholtz equation. Appropriate boundary conditions have been used in order to get a unique dispersion relation. The surface wave modes are then extracted from the relation by using a root-searching algorithm, which in this work is the MATLAB Genetic Algorithm toolbox. Many different substrate configurations have been considered, starting from the very basic isotropic case to the most complex spatial dispersion case. In between, anisotropicity has also been added to the substrate by turning the static magnetic field on. The permittivity tensors are derived from the fluid transport equations and through the course of the thesis, extra terms such as plasma oscillations, damping, cyclotron resonance, and density perturbations are added. Many assumptions, approximations, and limitations of this analytical treatment have also been addressed. Simulations results have been shown to see the effects of these various terms. The substrates analyzed in the chapters are only a theoritical approximation of an actual substrate. The main idea behind this study is to get a feel for how the transport equations can be utilized to obtain properties that might be on a macroscopic scale. The physical significance of this expose has also been discussed in the last chapter. Issues such as scalability to space plasmas and future ramifications are also included. The study done thus far will be useful in investigating such plasma mediums.
73

Improvement of surface wave methods for constructing subsurface S-wave velocity structures / 表面波探査手法による地下S波速度構造推定の高精度化

Ikeda, Tatsunori 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18257号 / 工博第3849号 / 新制||工||1590(附属図書館) / 31115 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 松岡 俊文, 教授 清野 純史, 教授 小池 克明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
74

Multichannel Analysis of Surface Waves Using Distributed Fiber Optic Sensors

Galan-Comas, Gustavo 11 December 2015 (has links)
The Multichannel Analysis of Surface Waves (MASW) method traditionally uses an array of collinear vertical geophones to measure seismic wave propagation velocity at discrete points along the ground surface. Distributed fiber optic sensors (FOS) measure the average longitudinal strain over discrete lengths (i.e., zones) of a buried fiber optic cable. Such strain measurements can be used to assess ground motion and thus analyzed with the MASW method. To evaluate the feasibility of using FOS strain measurements in the MASW method, field experiments were conducted with both FOS and surface vertical geophones. Synthetic seismograms were also used to compare FOS to vertical and horizontal geophones and investigate the effect of installation depth and sensor type. Through the MASW method, shear wave (Vs) profiles from the FOS showed comparable results to those obtained with the geophones and achieved the same degree of uncertainty from the non-uniqueness of the MASW inversion process.
75

Excitation of surface waves with piezoelectric layers

Nassar, Abubakr A. (Abubakr Abbas) January 1983 (has links)
No description available.
76

Strong coupling of Bloch surface waves and excitons in ZnO up to 430 K

Henn, Sebastian, Grundmann, Marius, Sturm, Chris 02 May 2023 (has links)
We report on the investigation and observation of Bloch surface wave polaritons, resulting from the interaction between excitons in ZnO and a Bloch surface wave supported by a distributed Bragg reflector (DBR), for temperatures up to 430 K. The samples were fabricated using pulsed laser deposition and consist of a DBR made of 6.5 layer pairs of yttrica-stabilized zirconia and Al2O3 with a ZnO surface layer. We measured the reflectivity of transverse electric modes using a SiO2 prism in Kretschmann–Raether configuration, giving access to high in-plane momenta. Whereas the lower polariton branch was clearly observable, the upper polariton branch was not visible, due to the strong absorption in ZnO above the excitonic resonance. By employing a coupled oscillator model for the interaction between the bare surface mode and exciton, we derived a corresponding Rabi splitting between 100–192 meV at 294 K, which decreases with increasing temperature.
77

Emergent Phenomena in Anisotropic Photonics

Emroz Khan (9234977) 20 April 2022 (has links)
<pre>The degree of freedom brought about by breaking the directional symmetry of space through the use of anisotropic media finds applications in numerous photonic systems. Almost all these systems are based on physical principles that are generalized extensions of their isotropic counterparts, much in the same way an ellipse is related to a circle. However, as we show, there are examples where, in the presence of loss, disorder or even coupling to the measurement apparatus, emerges a completely new behavior which is qualitatively different from the isotropic case. In this work we study these emergent phenomena found in open anisotropic photonic systems.</pre> <pre><br></pre> <pre>We demonstrate that open systems based on biaxial anisotropic medium can support exceptional points which are singularities in the parameter space of the system where the mode frequencies as well as the modes themselves coalesce. We also show that topological insulators, which are novel materials that behave as dielectric in the bulk but metallic in the surface and exhibit bianisotropy through the coupling of their electric and magnetic response, can emit thermal radiation that carries nonzero spin angular momentum. Next, after describing how the strong anisotropy of hyperbolic metamaterial can support electromagnetic fields propagating with high wavenumbers unbounded by the frequency, we show that a super-resolution imaging scheme based on such material is quite robust against substantial loss and disorder. Finally, we consider an example of an incoherent perfect absorber and show that loss and anisotropy in this case can work together to recover the ideal lossless limit for the absorbing performance. In addition to making new conceptual connections between photonics and other branches of science such as condensed matter physics, biotechnology and quantum mechanics, these new emergent phenomena are shown to have thermal, imaging and sensing applications.</pre>
78

Passive Wireless Saw Sensors With New And Novel Reflector Structures Design And Applications

Kozlovski, Nikolai 01 January 2011 (has links)
Surface acoustic wave (SAW) devices are a solution for today’s ever growing need for passive wireless sensors. Orthogonal frequency coding (OFC) together with time division multiplexing (TDM) provides a large number of codes and coding algorithms producing devices that have excellent collision properties. Novel SAW noise-like re- flector (NLR) structures with pulse position modulation (PPM) are shown to exhibit good auto- and cross-correlation, and anti-collision properties. Multi-track, multi-transducer approaches yield devices with adjustable input impedances and enhanced collision properties for OFC TDM SAW sensor devices. Each track-transducer is designed for optimum performance for loss, coding, and chip reflectivity. Experimental results and theoretical predictions confirm a constant Q for SAW transducers for a given operational bandwidth, independent of device and transducer embodiment. Results on these new NLR SAW structures and devices along with a new novel 915 MHz transceiver based on a software radio approach was designed, built, and analyzed. Passive wireless SAW temperature sensors were interrogated and demodulated in a spread spectrum correlator system using a new adaptive filter. The first-ever SAW OFC four-sensor operation was demonstrated at a distance of 1 meter and a single sensor was shown to operate up to 3 meters. Comments on future work and directions are also presented
79

Development of a compact sound source for the active control of turbofan inlet noise

Dungan, Mary E. 30 March 2010 (has links)
The concept of a compact sound source driven by piezoactuators is experimentally investigated, and analytical design tools are developed. The sound source, consisting of a thin, cylindrically curved aluminum panel and a pair of collocated, surface-bonded piezoceramic actuators, was developed with the objective of employing it as a secondary sound source in the active control of turbofan blade interaction inlet noise. The sound source was fitted in an experimental duct representative of an aircraft engine inlet, and the interior and exterior sound pressure levels generated by the source were measured. The effects of excitation voltage, excitation frequency, duct length, and downstream termination of the duct were investigated. It was found that the source is capable of generating relatively high acoustic levels at its fundamental frequency (over 130 dB at maximum voltage input). Techniques for analytically predicting the acoustic levels are investigated. A commercial code for numerical modeling of structural-acoustic radiation was utilized. Results show generally good agreement with experimental measurements for the case of the short duct. It is believed that the model accuracy can be further improved through additional refinements in the modeling techniques. / Master of Science
80

Nonreciprocal magnetostatic surface wave in thin ferromagnetic film

Vishal, Kumar 12 September 2016 (has links)
No description available.

Page generated in 0.0366 seconds