• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 165
  • 71
  • 31
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 583
  • 82
  • 81
  • 56
  • 47
  • 43
  • 37
  • 35
  • 33
  • 31
  • 29
  • 29
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Synthesis of acrylate-based polymeric and polymerisable surfactants and their application in the emulsion polymerisation of styrene

Tichagwa, Lilian M 03 1900 (has links)
Thesis (PhD (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / The study described in this dissertation examines the synthesis of mainly acrylate-based surfactants and their subsequent use as emulsifiers/stabilisers in the emulsion polymerisation of styrene. Some acrylamide-based surfactants were also studied, for comparison purposes only. Two major types of surfactants, polymerisable (surfactant monomers or surfmers) and polymeric, were synthesised, characterised and used in emulsion polymerisation reactions. The prepared polymerisable surfactants, 12-acryloyloxydodecanoic acid (12-ADA) and 11-acrylamidoundecanoic acid (11-AAUA), and their sodium salts, had reactive acryloyl functionalities.
182

Molecular dynamics study of solvation phenomena to guide surfactant design

Dalvi, Vishwanath Haily 02 June 2010 (has links)
Supercritical carbon-dioxide has long been considered an inexpensive, safe and environmentally benign alternative to organic solvents for use in industrial processing. However, at readily accessible conditions of temperature and pressure, it is by itself too poor a solvent for a large number of industrially important solutes and its use as solvent necessitates concomitant use of surfactants. Especially desirable are surfactants that stabilize dispersions of water droplets in carbon-dioxide. So far only molecules containing substantially fluorinated moieties e.g. fluoroalkanes and perfluorinated polyethers, as the CO₂-philes have proved effective in stabilizing dispersions in supercritical carbon-dioxide. These fluorocarbons are expensive, non-biodegradable and can degrade to form toxic and persistent environmental pollutants. Hence there is great interest in developing non-fluorous alternatives. Given the development of powerful computers, excellent molecular models and standardized molecular simulation packages we are in a position to augment the experiment-driven search for effective surfactants using the nanoscopic insights gleaned from analysis of the results of molecular simulations. We have developed protocols by which to use standard and freely available molecular simulation infrastructure to evaluate the effectiveness of surfactants that stabilize solid metal nanoparticles in supercritical fluids. From the results, which we validated against experimental observations, we were able to determine that the alkane-based surfactants, that are so effective in organic fluids, are ineffective or only partially effective in CO₂ because the weak C-H dipoles cannot make up for the energetic penalty incurred at the surfactant-fluid interface by CO₂ molecules due to loss of quadrupolar interactions with other CO₂ molecules. Though the effectiveness of purely alkane-based surfactants in carbon-dioxide can be improved by branching, they cannot approach the effectiveness of the fluoroalkanes. This is because the stronger C-F dipole can supply the required quadrupolar interactions and a unique geometry renders repulsive the fluorocarbons' electrostatic interactions with each other. We have also determined the source of the fluoroalkanes' hydrophobicity to be their size which offsets the effect of favourable electrostatic interactions with water. Hence we can provide guidelines for CO₂-philic yet hydrophobic surfactants. / text
183

FUNCTIONALIZATION OF FLUORINATED SURFACTANT TEMPLATED SILICA

Osei-Prempeh, Gifty 01 January 2007 (has links)
Surfactant templating provides for the synthesis of ordered mesoporous silica and the opportunity to tailor the pore size, pore structure, particle morphology and surface functionality of the silica through the selection of synthesis conditions and surfactant template. This work extends the synthesis of nanostructured silica using fluorinated surfactant templates to the synthesis of organic/inorganic composites. The effect of fluorinated surfactant templates (C6F13C2H4NC5H5Cl, C8F17C2H4NC5H5Cl and C10F21C2H4NC5H5Cl), which have highly hydrophobic fluorocarbon tails, on functional group incorporation, accessibility, and silica textural properties is examined and compared to properties of hydrocarbon surfactant (C16H33N(CH3)3Br, CTAB) templated silica. Hydrocarbon (vinyl, n-decyl and 3-aminopropyl) and fluorocarbon (perfluoro-octyl, perfluorodecyl) functional group incorporation by direct synthesis is demonstrated, and its effects on silica properties are interpreted based on the aggregation behavior with the surfactant templates. Silica materials synthesized with CTAB possess greater pore order than materials synthesized with the fluorocarbon surfactants. The incorporation of the short vinyl chain substantially reduces silica pore size and pore order. However, pore order increases with functionalization for materials synthesized with the fluorinated surfactant having the longest hydrophobic chain. The incorporation of longer chain functional groups (n-decyl, perfluorodecyl, perfluoro-octyl) by direct synthesis results in hexagonal pore structured silica for combinations of hydrocarbon/fluorocarbon surfactant and functional groups. The long chain of these silica precursors, which can be incorporated in the surfactant micelle core, affect the pore size less than vinyl incorporation. Synthesis using the longer chain fluoro-surfactant (C8F17C2H4NC5H5Cl) template in ethanol/water solution results in highest incorporation of both n-decyl and the fluorocarbon functional groups, with a corresponding loss of material order in the fluorinated material. Matching the fluorocarbon surfactant (C6F13C2H4NC5H5Cl) to the perfluoro-octyl precursor did not show improved functional group incorporation. Higher incorporation of the perfluoro-octyl functional group was observed for all surfactant templates, but the perfluoro-decyl silica is a better adsorbent for the separation of hydrocarbon and fluorocarbon tagged anthraquinones. Incorporating a reactive hydrophilic functional group (3-aminopropyl) suggests further applications of the resulting nanoporous silica. Greater amine incorporation is achieved in the CTAB templated silica, which has hexagonal pore structure; the order and surface area decreases for the fluorinated surfactant templated material.
184

PORE ENGINEERING OF SURFACTANT TEMPLATED NANOPOROUS SILICA USING SUPERCRITICAL CARBON DIOXIDE

Ghosh, Kaustav 01 January 2007 (has links)
The use of compressed CO2 processing to alter the pore size, structure and timescale of silica condensation in surfactant templated silica thin films and powders is investigated by systematically varying the template structure and CO2 processing conditions. Tailoring the mesoporous materials increases its potential applications, as demonstrated in catalysis, drug delivery, chromatographic and electrode applications. This work demonstrates for the first time the applicability of fluorinated surfactants as templates for the synthesis of mesoporous silica thin films by dip coating. Well-ordered films with 2D hexagonal close-packed pore structure are synthesized in an acid-catalyzed medium using three cationic fluorinated templates of varied tail length and branching (C6F13C2H4NC5H5Cl, C8F17C2H4NC5H5Cl and (CF3)2CFC5F9C2H4NC5H5Cl). CO2 processing of the fluorinated templated silica results in a significant and controlled increase in pore diameter relative to the unprocessed films. The pore expansion is significantly greater compared to the negligible expansion observed in hydrocarbon (C16H23NC5H5Br) templated silica. The greater swelling of the fluorinated templates is attributed to the favorable penetration of CO2 in the CO2-philic fluorinated tail and the relative solvation of each template is interpreted from their interfacial behavior at the CO2-water interface. The CO2 based pore expansion observed in fluorinated surfactant templated films is extended successfully to base-catalyzed silica powders templated with a fluorinated surfactant (C6F13C2H4NC5H5Cl). Pore expansion in silica powders is significantly less than in acid catalyzed films and demonstrates the effects of pH on surfactant selfassembly in CO2 and increased silica condensation at basic conditions, which inhibits pore expansion. Finally, the use of fluorescence probe molecules is demonstrated for in-situ monitoring of the of CO2 processing of surfactant templated silica films to provide time dependent data on the local environment and dynamics of CO2 penetration. CO2 uptake occurs in surfactant tails even for hydrocarbon templates (C16H23N(CH3)3Br and C16H23NC5H5Br), which display negligible CO2 based swelling of the resulting pores. The timescale of silica condensation increases significantly in the presence of CO2 suggesting opportunities for structure alteration through application of external forces, such as magnetic fields and change in substrate chemistry and system humidity
185

EFFECT OF FLUORINATION ON PARTITIONING BEHAVIOR AND BILAYER SELF ASSEMBLY

Ojogun, Vivian Aramide 01 January 2010 (has links)
Fluorinated systems are defined by unique properties that offer advantages in drug delivery, material synthesis and industrial applications. In comparison to their hydrocarbon counterparts, the design of fluorinated solutes for tailored applications is limited by the inability to predict the effect of fluorination on phase behavior. This work examines and interprets the influence of fluorination on the phase behavior of fluorinated solutes and surfactants, with emphasis on their impact on vesicle bilayers. Thermodynamic partitioning of functionalized series of fluorinated and hydrocarbon nicotinate prodrugs fashioned to promote solubility in a fluorocarbon solvent (perfluorooctyl bromide; PFOB) is measured. Predictive approaches are also employed to describe partitioning of these nicotinates between immiscible phases relevant to drug delivery. The findings reveal no strong correlation of the partitioning trends with biological markers of cytotoxicity and prodrug uptake for PFOB mediated delivery. However, partitioning in model membranes (liposomes), which, increases with the hydrophobicity of the perhydrocarbon nicotinates, suggests incorporation in a cellular matrix is chain length dependent. The impact of incorporating fluorinated surfactants in catanionic vesicles, which form spontaneously in dilute aqueous solutions and serve as potential substitutes to conventional meta-stable liposome-based vesicles, is studied. Much larger isotropic vesicle regions are observed in the phase map of the partially fluorinated catanionic surfactant pair, cetylpyridinium bromide/ sodium perfluorooctanoate (CPB/SPFO) than in fully fluorinated HFDPC (1,1,2,2,-tetrahydroperfluorododecyl pyridinium chloride )/SPFO. Fluorescence probing of the vesicle bilayers suggest more fluid bilayers in CPB/SPFO than in HFDPC/SPFO due to better chain packing in the fully fluorinated bilayer. However, the vesicle region is expanded in more asymmetric fluorinated bilayers of HFDPC/SPFH (sodium perfluorohexanoate). The increased chain asymmetry in HFDPC/SPFH results in reduced packing density and more fluid bilayers than in HFDPC/SPFO. The robustness of CPB/SPFO and HFDPC/SPFO vesicles is demonstrated in the synthesis of silica hollow spheres by templating and the retention of encapsulated solutes. Higher colloidal stability of the silica spheres is achieved in HFDPC/SPFO relative to CPB/SPFO due to the barrier effect of the fluorinated bilayer. Similarly, higher solute retention in HFDPC/SPFO is observed. The modulation of phase behavior with fluorination offers opportunities in tunable applications of fluorinated bilayers.
186

Propriétés physico-chimiques des mousses : études approfondies sur des mousses modèles et études exploratoires sur de nouvelles mousses.

Guillermic, Reine-Marie 25 January 2011 (has links) (PDF)
Dans cette thèse expérimentale sur la physique des mousses liquides, plusieurs thématiques sont abordées ayant pour point commun la mise en évidence du couplage entre les différentes échelles d'organisation de la mousse. La première partie traite plus spécifiquement de physico chimie par la modification de la formulation des solutions utilisées. Nous avons ainsi réalisé des mousses dopées à la laponite, présentant des propriétés inhabituelles. Nous exposons par ailleurs les résultats d'études interfaciales d'un polymère thermosensible, le poly(N-isopropylacrylamide) et d'un tensioactif photosensible (AzoTAB). Dans la seconde partie de cette thèse, nous discutons d'un nouveau protocole de rhéologie appliqué aux mousses ainsi que de propriétés acoustiques de ce matériau.
187

Surfactants in anionic latex films

Paakkonen, Johan January 2010 (has links)
No description available.
188

Issues concerning the use of H and Sb surfactant in Si and Si←1←-←xGe←X MBE

Lambert, Andrew David January 2000 (has links)
No description available.
189

A study of polymer-surfactant interactions by neutron reflectivity

Warren, Nicola January 1999 (has links)
No description available.
190

Computer simulations of evaporation of sessile liquid droplets on solid substrates

Semenov, Sergey January 2012 (has links)
Present work is focused on the numerical study of evaporation of sessile liquid droplets on top of smooth solid substrates. The process of evaporation of a sessile liquid droplet has lots of different applications both in industry and research area. This process has been under study for many years, and still it is an actual problem, solution of which can give answers on some fundamental and practical questions. Instantaneous distribution of mass and heat fluxes inside and outside of an evaporating sessile droplet is studied in this research using computer simulations. The deduced dependences of instantaneous fluxes are applied for self-consistent calculations of time evolution of evaporating sessile droplets. The proposed theory of evaporating sessile droplets of liquid has been validated against available experimental data, and has shown a good agreement. Evaporation of surfactant solution droplets is studied experimentally. The theory, proposed for two stages of evaporation, fits experimental data well. An additional evaporation stage, specific for surfactant solutions, is observed and described. Mathematical modelling of this stage requires further research on surfactant adsorption and its influence on the value of receding contact angle. Numerical study of the evaporation of microdroplets is conducted in order to evaluate the significance of different evaporation mechanisms (diffusive and kinetic models of evaporation) and different physical phenomena (Kelvin s equation, latent heat of vaporization, thermal Marangoni convection, Stefan flow).

Page generated in 0.055 seconds