• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 165
  • 71
  • 31
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 583
  • 82
  • 81
  • 56
  • 47
  • 43
  • 37
  • 35
  • 33
  • 31
  • 29
  • 29
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Rheology And Dynamics Of Surfactant Mesophases Using Finite Element Method

Patel, Bharat 01 1900 (has links) (PDF)
No description available.
232

Studies on antimicrobial activity of arginine-based surfactants and chemo- enzymatic synthesis of novel amphiphiles based on L-arginine and D-fagomine

Castillo Expósito, José Antonio 02 February 2007 (has links)
Los conjugados de lípidos y aminoácidos presentan excelentes propiedades tensioactivas, alta biodegradabilidad y baja toxicidad. De entre ellos, los derivados de arginina poseen un amplio espectro de actividad antimicrobiana.Con el objetivo de elucidar el modo de acción de los tensioactivos derivados de arginina, se ha investigado su interacción con modelos de membrana (liposomas y monocapas de fosfolípidos) y se ha evaluado los efectos que causan en Staphylococcus aureus y Escherichia coli. La eficacia antimicrobiana de los tensioactivos derivados de L-arginina previamente sintetizados en nuestro grupo de investigación se ha mejorado. Para ello, se ha preparado quimo-enzimáticamente una nueva familia de derivados de L-arginina, bis(fenilacetilargininas). Finalmente y con el propósito de preparar nuevos posibles agentes antimicrobianos, se ha sintetizado una familia de compuestos anfifílicos, derivados alquilados de D-fagomina, empleando fructosa-6-fosfato aldolasa (FSA) como biocatalizador. / Amino acid lipid conjugates possess excellent surface properties, high biodegradability and low toxicity. Among them, arginine-based surfactants show a broad antimicrobial activity.The mode of action of arginine-based surfactants was investigated. Thus, their interaction with membrane models (liposomes and phospholipid monolayers) and the effects caused on Staphylococcus aureus and Escherichia coli were studiedThe antimicrobial efficacy of the arginine-based surfactants synthesised previously in our research group was improved. To this end, novel bis(phenylacetylarginine) derivatives were prepared chemoenzymatically.Finally and with the aim of preparing novel antimicrobial agents, we prepared a new family of amphiphilic compounds, N-alkylated derivatives of D-fagomine, using fructose-6-phosphaste aldolase (FSA) as biocatalyst.
233

In vitro and ex vivo wettability of hydrogel contact lenses

Rogers, Ronan January 2006 (has links)
The wettability of contact lenses has become an area of intense research, with the belief that the more "hydrophilic" or wettable the lens surface is, the more comfortable the lens may be, as the posterior surface of the eyelid will move more smoothly over it, hence increasing comfort. <br /><br /> There are many ways to assess the wettability of a given material, namely sessile drop,<sup>1</sup> captive bubble <sup>2</sup> or Wilhelmy plate. <sup>3</sup> This thesis used the sessile drop method to determine the surface wettability of various hydrogel contact lens materials, by measuring the advancing contact angle made between the lens surface and a pre-determined volume of HPLC-grade water. This was followed by measuring the surface wettability following periods in which the lens materials were soaked in various contact lens care regimens. Further studies determined wettability of lens materials after various periods of in-eye wear and finally a study was undertaken to evaluate if a novel biological technique could be used to differentiate proteins that deposit on hydrogel lens materials that may affect wettability and cause discomfort. <br /><br /> A variety of hydrogel lenses, taken directly from their packaging and after soaking in various care regimens, were analyzed to determine their sessile drop advancing contact angles, in vitro. These studies indicated that poly-2-hydroxyethylmethacrylate (pHEMA)-based lenses are inherently more wettable than silicone-based lenses, unless they have a surface treatment that completely covers the hydrophobic siloxane groups. Additionally, certain combinations of lens materials and care regimens produce inherently more wettable surfaces when measured in vitro. <br /><br /> Suitable methods to assess contact lens wettability ex vivo, or after subjects had worn lenses for set periods of time, were developed. It was determined that using latex gloves to remove lenses had no impact upon the lens surface wettability and that rinsing of the lens surface after removal from the eye was required to determine the wettability of the underlying polymer. <br /><br /> The final wettability studies involved an analysis of various lens materials from clinical studies conducted within the Centre for Contact Lens Research (CCLR). These studies investigated differences in wettability between silicone hydrogel lenses manufactured from differing polymers and variations in ex vivo wettability of several combinations of lens materials and solutions, worn for varying periods of time. <br /><br /> A novel method to investigate proteins extracted from lenses using 2D-Difference in Gel Electrophoresis (DIGE) found that this technique could be used to analyze proteins extracted from contact lenses. The data obtained showed that there was no difference between a group of subjects who were symptomatic of lens-induced dryness or a control group, and that care solutions had a minimal influence on the pattern of deposition seen. <br /><br /> The overall conclusion of these studies is that hydrogel lens wettability is affected by the polymer composition and that care regimen components can modify the surface wettability.
234

Bilayer Approaches for Nanoparticle Phase Transfer

January 2012 (has links)
Nanoparticles (NPs) are often synthesized in organic solvents due to advantages of superior size and shape control obtainable in a non-polar environment. However, many applications featuring NPs require them to be in aqueous media. To transfer NPs from oil to water, surfactants with amphiphilic (hydrophobic and hydrophilic) groups have been widely used. A popular phase-transfer approach involves formation of oil-in-water emulsions upon which the oil storing the NPs is boiled off. In the process, surfactants form bilayers with hydrophobic groups on the NPs rendering them water-dispersible. This transfer route however is limited in that NPs aggregate to form clusters which results in poor colloidal stability and for the specific case of quantum dots (QDs), adversely impacts optical properties. It has ever since remained a challenge to devise approaches that transfer NPs from oil to water as single particles without compromising NP stability and properties. We have discovered that by simple addition of salt to water during the step of emulsion formation, NP transfer efficiency can be greatly enhanced in "salty-micelles" of surfactants. The strength of this approach lies in its simplicity and generic nature in that the transfer scheme is valid for different NP, surfactant and salt types. Using a model system with cadmium selenide (CdSe) QDs as NPs, Aerosol-OT (AOT) as the surfactant and NaCl as the salt in water, we found >90% of CdSe QDs transferred in salty-micelles of AOT which was significantly higher than the 45-55% QDs that transferred in deionized-water (DI-water) micelles of AOT. In the salty-micelle environment, QDs were found to exist predominantly as single NPs with narrow size distribution, as established by light scattering, analytical ultracentrifugation and electron microscopy. The effects of salt were in lowering aqueous solubility of AOT through "salting-out" action and in screening repulsions between like-charged head groups of AOT molecules. Electrophoresis, thermogravimetric analysis and photoluminescence measurements using a solvatochromic dye established higher surfactant coverage with greater lateral compaction for QDs in salty-micelles over the DI-micelle counterpart. Single NP characteristics along with a hydrophobic environment in laterally compact salty-micelles resulted in better retention of optical properties of QDs. Observations of a secondary effect by salt in inducing spontaneous emulsification of a hydrocarbon (octane)/AOT/brine system were systematically investigated by tracking time-variant octane droplet size and charge. Salinity levels that determine the spontaneous curvature and phase behavior of AOT were seen to influence the initial nucleation of octane droplets and their subsequent growth. The smallest octane drops (sub 50 nm) were nucleated at the optimum cross-over salinity and emergence of the liquid crystalline phase of AOT resulted in slowest growth rates. These factors contributed towards higher transfer efficiency of NPs in salty-micelles. Two applications from formulating aqueous NP suspensions by the new phase-transfer approach are described. In the first, QD and carbon-dot (C-Dot) "nanoreporters" were formulated for oil-field reservoir characterization using Neodol 91-7 (nonionic) and Avanel S150 CGN (hybrid nonionic and anionic) as surfactants. These NPs were stable to aggregation under reservoir-representative conditions (salinities: 1M NaCl, 1M KCl and 0.55M synthetic seawater; temperatures: 70-100 °C) and demonstrated flow and transport through crushed-calcite and quartz-sand columns with high breakthrough and recovery (> 90%). In the second application, tandem assembly of a cationic polymer, multivalent salt, and NPs was investigated in a microfluidic channel where charge ratio of the polymer/salt and shear from flow and device geometry determined their assembly into higher ordered structures such as gels and capsules.
235

Study of Foam Mobility Control in Surfactant Enhanced Oil Recovery Processes in One-Dimensional, Heterogeneous Two-Dimensional, and Micro Model Systems

January 2011 (has links)
The focus of this thesis was conducting experiments which would help in understanding mechanisms and in design of surfactant enhanced oil recovery (EOR) processes in various scenarios close to reservoir conditions such as heterogeneity, effects of crude oil, wettability, etc. Foam generated in situ by surfactant alternating gas injection was demonstrated as a substitute for polymer drive in a 1-D FOR process. It was effective in a similar process for a 266 cp crude oil even though the system did not have favorable mobility control. Foam enhanced sweep efficiency in a layered sandpack with a 19:1 permeability ratio. Foam diverted surfactant from the high- to the low-permeability layer. Ahead of the foam front, liquid in the low-permeability layer crossflowed into the high-permeability layer. Foam completely swept the system in 1.3 TPV (total pore volume) fluid injection while waterflood required 8 TPV. When the same 2-D system was oil-wet, the recovery by watertlood was only 49.1% of original oil-in-place (OOIP) due to injected water flowing through high-permeability zone leaving low-permeability zone unswept. To improve recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT) and consequently enabled gravity and capillary pressure driven vertical counter-current flow to occur and exchange fluids between layers during a 42-day system shut-in. Cumulative recovery after a subsequent foamflood was 94.6% OOIP. The addition of lauryl betaine to NI at a weight ratio of 2:1 made the new NIB a good IFT-reducing and foaming agent with crude oil present. It showed effectiveness in water-wet homogeneous and oil-wet heterogeneous sandpacks. The unique attribute of foam with higher apparent viscosity in high- than in low-permeability regions makes it a better mobility control agent than polymer in heterogeneous systems. One single surfactant formulation such as NIB in this study that can simultaneously reduce IFT and generate foam will improve the microscopic displacement and sweep efficiency from the beginning of a chemical flooding process. Foam generation mechanisms, alkaline/surfactant processes, and foam stability in presence of crude oil were investigated in a glass micro model. Total acid number measurement with spiking method was discussed.
236

Transverse relaxation in sandstones due to the effect of internal field gradients and characterizing the pore structure of vuggy carbonates using NMR and Tracer analysis

Rohilla, Neeraj 16 September 2013 (has links)
Nuclear magnetic resonance (NMR) has become an indispensable tool in petroleum industry for formation evaluation. This dissertation addresses two problems. • We aim at developing a theory to better understand the phenomena of transverse relaxation in the presence of internal field gradients. • Chracterizing the pore structure of vuggy carbonates. We have developed a two dimensional model to study a system of claylined pore. We have identified three distinct relaxation regimes. The interplay of three time parameters characterize the transverse relaxation in three different regimes. In future work, useful geometric information can be extracted from from SEM images and the pore size distribution analysis of North Burbank sandstone to simulate transverse relaxation using our 2-D clay flake model and study diffusional coupling in the presence of internal field gradients. Carbonates reservoirs exhibit complex pore structure with micropores and macropores/vugs. Vuggy pore space can be divided into separate-vugs and touching-vugs, depending on vug interconnection. Separate vugs are connected only through interparticle pore networks and do not contribute to permeability. Touching vugs are independent of rock fabric and form an interconnected pore system enhancing the permeability. Accurate characterization of pore structure of carbonate reservoirs is essential for design and implementation of enhanced oil recovery processes. However, characterizing pore structure in carbonates is a complex task due to the diverse variety of pore types seen in carbonates and extreme pore level heterogeneity. The carbonate samples which are focus of this study are very heterogeneous in pore structures. Some of the sample rocks are breccia and other samples are fractured. In order to characterize the pore size in vuggy carbonates, we use NMR along with tracer analysis. The distribution of porosity between micro and macro-porosity can be measured by NMR. However, NMR cannot predict if different sized vugs are connected or isolated. Tracer analysis is used to characterize the connectivity of the vug system and matrix. Modified version of differential capacitance model of Coats and Smith (1964) and a solution procedure developed by Baker (1975) is used to study dispersion and capacitance effects in core-samples. The model has three dimensionless groups: 1) flowing fraction (f), 2) dimensionless group for mass transfer (NM) characterizing the mass transfer between flowing and stagnant phase and 3) dimensionless group for dispersion (NK) characterizing the extent of dispersion. In order to obtain unique set of model parameters from experimental data, we have developed an algorithm which uses effluent concentration data at two different flow rates to obtain the fitted parameter for both cases simultaneously. Tracer analysis gives valuable insight on fraction of dead-end pores and dispersion and mass transfer effects at core scale. This can be used to model the flow of surfactant solution through vuggy and fractured carbonates to evaluate the loss of surfactant due to dynamic adsorption.
237

In vitro and ex vivo wettability of hydrogel contact lenses

Rogers, Ronan January 2006 (has links)
The wettability of contact lenses has become an area of intense research, with the belief that the more "hydrophilic" or wettable the lens surface is, the more comfortable the lens may be, as the posterior surface of the eyelid will move more smoothly over it, hence increasing comfort. <br /><br /> There are many ways to assess the wettability of a given material, namely sessile drop,<sup>1</sup> captive bubble <sup>2</sup> or Wilhelmy plate. <sup>3</sup> This thesis used the sessile drop method to determine the surface wettability of various hydrogel contact lens materials, by measuring the advancing contact angle made between the lens surface and a pre-determined volume of HPLC-grade water. This was followed by measuring the surface wettability following periods in which the lens materials were soaked in various contact lens care regimens. Further studies determined wettability of lens materials after various periods of in-eye wear and finally a study was undertaken to evaluate if a novel biological technique could be used to differentiate proteins that deposit on hydrogel lens materials that may affect wettability and cause discomfort. <br /><br /> A variety of hydrogel lenses, taken directly from their packaging and after soaking in various care regimens, were analyzed to determine their sessile drop advancing contact angles, in vitro. These studies indicated that poly-2-hydroxyethylmethacrylate (pHEMA)-based lenses are inherently more wettable than silicone-based lenses, unless they have a surface treatment that completely covers the hydrophobic siloxane groups. Additionally, certain combinations of lens materials and care regimens produce inherently more wettable surfaces when measured in vitro. <br /><br /> Suitable methods to assess contact lens wettability ex vivo, or after subjects had worn lenses for set periods of time, were developed. It was determined that using latex gloves to remove lenses had no impact upon the lens surface wettability and that rinsing of the lens surface after removal from the eye was required to determine the wettability of the underlying polymer. <br /><br /> The final wettability studies involved an analysis of various lens materials from clinical studies conducted within the Centre for Contact Lens Research (CCLR). These studies investigated differences in wettability between silicone hydrogel lenses manufactured from differing polymers and variations in ex vivo wettability of several combinations of lens materials and solutions, worn for varying periods of time. <br /><br /> A novel method to investigate proteins extracted from lenses using 2D-Difference in Gel Electrophoresis (DIGE) found that this technique could be used to analyze proteins extracted from contact lenses. The data obtained showed that there was no difference between a group of subjects who were symptomatic of lens-induced dryness or a control group, and that care solutions had a minimal influence on the pattern of deposition seen. <br /><br /> The overall conclusion of these studies is that hydrogel lens wettability is affected by the polymer composition and that care regimen components can modify the surface wettability.
238

Admicelle-Based Solid Phase Extraction of Phenols Using Dialkylammonium Surfactant in the Hydroxide Form

Pickering, Kali R 01 August 2008 (has links)
A technique for admicelle-based solid phase extraction is presented in which a dialkylammonium surfactant in the hydroxide form is immobilized on silica. By converting dihexadecyldimethylammonium bromide to the hydroxide form, the surfactant is allowed to have the property of a strong base, aiding in the extraction of acidic phenols which are difficult to extract because of their differing polarities. The surfactant-silica admicelle parameters were optimized for the efficient extraction of eight phenols. Adsorbed phenols were eluted from the sorbent using small volumes of methanol. The phenols were preconcentrated from drinking water samples and were determined using high performance liquid chromatography (HPLC) coupled with a photo diode-array detector.
239

Deterioration Of Nemrut Sandstone And Development Of Its Conservation Treatments

Akoglu, Kiraz Goze 01 September 2011 (has links) (PDF)
In this study, it was aimed to develop conservation methodologies for the historic sandstones using the case of Nemrut Mount Monument to help their survival in open air conditions. The main conservation approach of this study was holistic as well as aiming at minimum intervention targeted to the problem areas. The most important weathering forms of Nemrut Sandstones were material loss due to loss of scales and granular disintegration as well as detachments by scales, back weathering due to loss of scales, cracking, granular disintegration, rounding/notching and discoloration/biological deposition. Deterioration mechanisms of sandstones were studied on deteriorated and relatively sound sandstones by nondestructive methods of UPV and QIRT, and by microstructural analyses using thin section, XRD and SEM-EDX analyses. In addition, the changes in physical and physcomechanical properties such as, color, bulk density, effective porosity, hydric, hygric and thermal dilatation and CEC of clays were determined. Sandstone deterioration was caused by swelling of clay minerals distributed in their matrix and clay accumulations between the detaching scales. Considerable thermal dilatation characteristics was also an important decay factor. Iron oxides caused discoloration at the surfaces, their phase changes was thought to be important in decay. The use of surfactant DAA, to control clay swelling was found to decrease the hydric dilatation by 40%. The consolidation treatments with nanosilica and silicate dispersions namely Funcosil KSE500STE, SytonX3, KSE300 and KSE100 have improved physicomechanical properties as followed by UPV measurements and decreased hydric dilatation. Their long term behaviour needed to be further investigated.
240

Investigations of amino acid-based surfactants at liquid interfaces

Yang, Dengliang 01 November 2005 (has links)
Herein are presented collective studies of amino acid-based surfactants, also known as lipoamino acids, at liquid interfaces. Chapter III describes an investigation of domain morphology of N-Stearoylglutamic acid (N-SGA) Langmuir monolayers at the air/water interface by epifluorescence microscopy. Anisotropic feather-like domains were observed in L-enantiomeric monolayers while symmetric circular domains were found in racemic N-SGA monolayers. At a surface pressure of 30 mN/m the enantiomeric domains melted at 31 ??C while the racemic domains melted at 27 ??C. This result is exactly opposite to the behavior found in bulk crystals where the racemate melts at a higher temperature. These results were explained in terms of different molecular packing and hydrogen bonding between bulk crystals and two-dimensional thin films for enantiomeric and racemic compounds. Chapter IV summarizes the investigations of hydrogen bonding in N-acyl amino acid monolayers by vibrational sum-frequency spectroscopy (VSFS). The intermolecular hydrogen bonding interaction between the adjacent molecules through amide-amide groups in N-stearoylalanine (N-SA) is characterized by an NH stretch peak at 3311 cm-1. This is the first time that the amide NH stretching signals have been detected with the VSFS technique. A similar peak was detected at 3341 cm-1on N-SGA monolayer. The higher frequency indicates that the H-bond strength is weaker due to the larger size of the glutamic acid residue. The NH stretch mode can thus be used as a fingerprint of hydrogen bonding among amide-amide groups. A peak at 3050 cm-1 due to hydrogen bonding among carboxyl groups was also resolved from the VSFS spectra. Molecular models of intermolecular hydrogen bonding were proposed.

Page generated in 0.0364 seconds