• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 72
  • 63
  • 39
  • 32
  • 26
  • 21
  • 12
  • 10
  • 7
  • 6
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 740
  • 117
  • 113
  • 69
  • 69
  • 66
  • 60
  • 56
  • 54
  • 48
  • 43
  • 42
  • 39
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Design, simulation, and modeling of MEMS angular acceleration inertial switch with tunable threshold

Alahmdi, Raed L. 07 1900 (has links)
We present the design and analysis of a new type of MEMS inertia switch with a tunable threshold, which can passively sense angular acceleration. The designs have a big proof mass for inducing rotation due to the angular impacts and also flexible cantilever beams to tune the acceleration threshold. The proposed designs were simulated using COMSOL Multiphysics, analytically modeled, and numerically integrated using MATLAB. The results showed that the acceleration can be tuned from 0 rad/s$^2$ to 65,000 rad/s$^2$ based on the used electrostatic voltage. The designs experience less than 10% overshot for shock durations higher than 20 ms. The rise time was less than 10 ms for all designs when the applied shock duration was less than 30 ms. The designs’ tunabilities were studied and characteristic angular acceleration versus tuning voltage graphs were developed for each design. The tuning voltage varied between the designs where the maximum pull-in voltage was 179 V in Design 2 and the minimum pull-in voltage was 59 V in Design 4.
132

The Performance of a Waveguide-Coupled Metal-Semiconductor-Metal Optoelecctronic Matrix Switch

Liu, Ying 06 1900 (has links)
Metal-semiconductor-metal (MSM) photodetectors are becoming attractive devices for optoelectronic integrated circuits due to their high speed and simplicity. Optoelectronic matrix switches based on MSM detector arrays offer many advantages such as zero-bias off-state, low bias voltage, high speed and large bandwidth. While in many applications the optical input is coupled in through the top surface of the device, optical signals can also be distributed through transparent waveguides that are located below the absorbing detector layer. Such waveguide-coupled detectors will act as optical taps when the coupling between the waveguide and detector layers is well under control. In this thesis, a 4x4 MSM waveguide-coupled optoelectronic matrix switch was demonstrated and analyzed. The strength of the coupling between the waveguide and detector layers was predicted theoretically and confirmed experimentally. Franz-Keldysh effect in this device was also demonstrated. / Thesis / Master of Engineering (ME)
133

Equivalent Circuit Model for Current Mode Controls and Its Extensions

Yan, Yingyi 15 March 2013 (has links)
Current-mode control architectures have been an indispensable technique in many applications, such as Voltage Regulator, Point-of-load converters, power factor correction, battery charger and LED driver. Since the inductor current ramp is used in the modulator in current-mode control without any low pass filter, high order harmonics play important role in the feedback control. This is the reason for the difficulty in obtaining the small-signal model for current-mode control in the frequency domain. A continuous time domain model was recently proposed as a successful model for current-mode control architectures. However, the model was derived by describing function method, which is very arithmetically complicated, not to mention time consuming. For the analysis and design of non-linear system, equivalent circuit model, which is user friendly and intuitive, is an effective tool. In this dissertation, the primary objective is to develop a unified three-terminal switch model for current-mode controls using the results of describing function derivation, which characterizes the small signal property of the common subcircuit of current mode controlled PWM converters. Its application is extended to average current mode control, V2 control and other proposed novel current mode control schemes. First, the existing model for current mode control is reviewed. The limitations of existing model for current-mode control are identified. Based on the universal small signal relationship between terminal currents and the results of describing function derivation, a unified three-terminal switch model for current mode control is proposed. A three-terminal equivalent circuit is developed to represent the small signal behavior of this common sub-circuit. The proposed model is applicable in both constant frequency and variable frequency modulation. After that, the modeling of digital predictive current mode control is presented. Predictive current mode control is one of the promising digital current mode control method featuring fast dynamic response and low sample rate requirement. Many implementations were presented in past ten years. To understand the benefit and the limitation of each implementation, help the engineer to choose the modulation scheme and design the control loop, a small signal Laplace-domain model for digital predictive current mode controls is proposed. The model is extended to the multi-sampled implementation. The modeling result is summarize as the small signal equivalent circuit mode, whose form is consistent with that of analog current mode controls. Based on S-domain model, digital predictive current mode controls are compared with analog implementation to demonstrate the advantages and limitation. Implementation selection guideline and compensation is discussed based on the modeling results. Then, using the proposed unified model is used in the analysis of average current mode control. Under proper design, the inductor current ripple passes through the current compensator and appears in PWM comparator. It significantly influence the high frequency small signal property of the converter. In chapter 3, the proportional feedback is separated from integral feedback so that the sideband frequency feedback effect can be taken into consideration. It extends the results obtained in peak-current model control to average current mode control. The proposed small signal model is accurate up to half switching frequency, predicting the sub-harmonic instability. Based on the proposed model, a new feedback design guideline is proposed. By designing the external ramp following the proposed design guideline, quality factor of the double poles at half of switching frequency in control-to-output transfer function can be precisely controlled. This helps the feedback design to achieve widest control bandwidth and proper damping. V2 control is a popular control scheme in Point-of-load converters due to the unique fast transient response. As the output voltage ripple is used as PWM modulation ramp, V2 control has close relationship with current mode control but this relationship was not addressed in the existing model. Chapter 4 utilizes the three-terminal switch model to build the equivalent circuit model for V2 control, which clearly shows that V2 control is a particular implementation of current mode control, with proportional capacitor voltage feedback and load current feedback embedded. The analysis presented in Chapter 3 provides a clear physical understanding of average current mode control. With constant frequency modulation, the control bandwidth is usually limited by the double pole at half of swithcing frequency, especially in the converters with wide duty cycle range. Chapter 5 proposed a novel I2 current mode control to improve the dynamic performance of average current mode control. In particular, constant on-time I2 control eliminates the need of external ramp while the current loop is inherently stable. Moreover, constant on-time modulation improves the light load efficiency. As a conclusion, this dissertation proposed a unified three-terminal switch model for current mode controls. The application of this equivalent circuit model is extended to average current mode control, V2 control and the novel I2 current mode control. The Laplace-domain model of predictive current mode control is also presented. All the modeling results are verified through simulation and experiments. / Ph. D.
134

Design Optimization of Hybrid Switch Soft-Switching Inverters using Multi-Scale Electro-Thermal Simulation

Reichl, John Vincent 17 November 2015 (has links)
The development of a fully automated tool that is used to optimize the design of a hybrid switch soft-switching inverter using a library of dynamic electro-thermal component models parameterized in terms of electrical, structural and material properties is presented. A multi-scale electro-thermal simulation approach is developed allowing for a large number of parametric studies involving multiple design variables to be considered, drastically reducing simulation time. Traditionally, electro-thermal simulation and analysis has been used to predict the behavior of pre-existing designs. While the traditional approach to electro-thermal analysis can help shape cooling requirements and heat sink designs to maintain certain junction temperatures, there is no guarantee that the design under study is the most optimal. This dissertation uses electro-thermal simulation to guarantee an optimal design and thus truly minimizing cooling requirements and improving device reliability. The proposed optimization tool is used to provide a step-by-step design optimization of a two-coupled magnetic hybrid soft-switching inverter. The soft-switching inverter uses a two-coupled magnetic approach for transformer reset condition [1], a variable timing control for achieving ZVS over the entire load range [2], and utilizes a hybrid switch approach for the main device [3]. Design parameters such as device chip area, gate drive timing control and external resonant capacitor and inductor are used to minimize device loss subject to design constraints such as converter minimum on-time, maximum device chip area, and transformer reset condition. Since the amount of heat that is dissipated has been minimized, the optimal cooling requirements can be determined by reducing the cooling convection coefficients until desired junction temperatures are achieved. The optimized design is then compared and contrasted with an already existing design from the Virginia Tech freedom car project using the generation II module. It will be shown that the proposed tool improves the baseline design by 16% in loss and reduces the cooling requirements by 42%. Validation of the device model against measured data along with the procedures for device parameter extraction is also provided. Validation of the thermal model against measured data is also provided. / Ph. D.
135

Floorplan-Aware High Performance NoC Design

Roca Pérez, Antoni 20 November 2012 (has links)
Las actuales arquitecturas de m�ltiples n�cleos como los chip multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento -ptimo para la inter-conexi-n de los diversos elementos de dichos sistemas. En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencillas, generalmente con una topolog'a en malla o anillo, ya que son suficientes para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida que los requerimientos del sistema -- baja latencia y alto rendimiento -- se hacen m�s exigentes, estas redes tan simples dejan de ser una soluci-n real. As', la comunidad investigadora ha propuesto y analizado NoCs m�s complejas. No obstante, estas soluciones son m�s dif'ciles de implementar -- especialmente los enlaces largos -- haciendo que este tipo de topolog'as complejas sean demasiado costosas o incluso inviables. En esta tesis, presentamos una metodolog'a de dise-o que minimiza la p�rdida de prestaciones de la red debido a su implementaci-n real. Los principales problemas que se encuentran al implementar una NoC son los conmutadores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular, es decir, formado como uni-n de m-dulos m�s peque-os. En nuestro caso, los m-dulos son id�nticos, donde cada m-dulo es capaz de arbitrar, conmutar, y almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colocaci-n de estos m-dulos en el chip, permitiendo que m-dulos de un mismo conmutador est�n distribuidos por el chip. Esta metodolog'a de dise-o la hemos aplicado a diferentes escenarios. Primeramente, hemos introducido nuestro conmutador modular en NoCs con topolog'as conocidas como la malla 2D. Los resultados muestran como la modularidad y la distribuci-n del conmutador reducen la latencia y el consumo de potencia de la red. En segundo lugar, hemos utilizado nuestra metodolog'a de dise-o para implementar un crossbar distribuid / Roca Pérez, A. (2012). Floorplan-Aware High Performance NoC Design [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17844
136

Optical control of nanoparticle catalysis influenced by photoswitch positioning in hybrid peptide capping ligands

Lawrence, R.L., Hughes, Zak, Cendan, V.J., Liu, Y., Lim, C.K., Prasad, P.N., Swihart, M.T., Walsh, T.R., Knecht, M.R. 09 June 2018 (has links)
Yes / Here we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: The N- or C-terminus, or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively; however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures. / Air Office of Scientific Research, grant number FA9550-12- 1-0226.
137

Unified Three-terminal Switch Model for Current Mode Controls

Yan, Yingyi 13 December 2010 (has links)
Current-mode control architectures with different implementation approaches have been an indispensable technique in many applications, such as voltage regulator, power factor correction, battery charger and LED driver. Since the inductor current ramp, one of state variables influenced by the input voltage and the output voltage, is used in the modulator in current-mode control without any low pass filter, high order harmonics play important role in the feedback control. This is the reason for the difficulty in obtaining the small-signal model for current-mode control in the frequency domain. A continuous time domain model was recently proposed as a successful model for current-mode control architectures with different implementation. However, the model was derived by describing function method, which is very arithmatically complicated, not to mention time consuming. Although an equivalent circuit for a current mode control Buck converter was proposed to help designers to use the model without involving complicated math, the equivalent circuit is not a complete model. Moreover, no equivalent circuit for other topologies is available for designers. In this thesis, the primary objective is to develop a unified three-terminal switch model for current-mode control with different implementation methods, which are applicable in all the current mode control power converters. First, the existing model for current mode control is reviewed. The limitation of average models and the discrete time model for current-mode control is identified. The continuous time model and its equivalent circuit of Buck converter is introduced. The deficiency of the equivalent circuit is discussed. After that, a unified three-terminal switch model for current mode control is presented. Based on the observation, the PWM switch and the closed current loop is taken as an invariant sub-circuit which is common to different DC/DC converter topologies. A basic small signal relationship between terminal currents is studied and the result shows that the PWM switch with current feedback preserves the property of the PWM switch in power stage. A three-terminal equivalent circuit is developed to represent the small signal behavior of this common sub-circuit. The proposed model is a unified model, which is applicable in both constant frequency modulation and variable frequency modulation. The physical meaning of the three-terminal equivalent circuit model is discussed. The model is verified by SIMPLIS simulation in commonly used converters for both constant frequency modulation and variable frequency modulation. Then, based on the proposed unified model, a comparison between different current mode control implementations is presented. In different applications, different implementations have their unique benefit on extending control bandwidth. The properties of audio susceptibility and output impedance are discussed. It is found that, for adaptive voltage positioning design, constant on-time current mode control can simplifies the outer loop design. Next, since multiphase interleaving structure is widely used in PFC, voltage regulator and other high current applications, the model is extended to multiphase current mode control. Some design concerns are discussed based on the model. As a conclusion, a unified three-terminal switch model for current mode controls is investigated. The proposed model is quite general and not limited by implementation methods and topologies. All the modeling results are verified through simulation and experiments. / Master of Science
138

Performance and Usability of Flexible Membrane Keyboards

Shin, Dong-Jae 23 September 2005 (has links)
Recently, many full-sized keyboards have been designed to fold in various ways in an attempt to make them more transportable. The flexible membrane keyboard, one type of full sized keyboard, is unique because it is made from silicon rubber, thus it is fully flexible and water resistant. Although a number of flexible keyboard characteristics are the same as standard keyboards (i.e. key size, shape and spacing), key-switch and key clicking mechanisms are inherently different. Since there is little or no existing research on flexible keyboards, there is a current need for data to facilitate design of such keyboards for use. Typing performance and perceived usability of several flexible keyboards that differed in terms of material hardness (hard, medium, or soft) and key contact point shape (circular or square) were studied. The results supported the hypothesis that both typing performance and usability of the flexible membrane keyboard were affected by material hardness and contact point shape. Square shaped contact points led to increased typing speed and decreased error rates, and medium or soft hardness led to increased typing speed. The best flexible keyboard (perceived by participants) in general received neutral usability ratings. However, ratings for mobility and design were much higher than neutral. Overall, subjective and objective measures of performance and usability indicated that flexible keyboards that are made of silicon of a soft or medium hardness and with a square shaped contact points are preferred. / Master of Science
139

An Empirical Study of the Effects of Context-Switch, Object Distance, and Focus Depth on Human Performance in Augmented Reality

Gupta, Divya 21 June 2004 (has links)
Augmented reality provides its user with additional information not available through the natural real-world environment. This additional information displayed to the user potentially poses a risk of perceptual and cognitive load and vision-based difficulties. The presence of real-world objects together with virtual augmenting information requires the user to repeatedly switch eye focus between the two in order to extract information from both environments. Switching eye focus may result in additional time on user tasks and lower task accuracy. Thus, one of the goals of this research was to understand the impact of switching eye focus between real-world and virtual information on user task performance. Secondly, focus depth, which is an important parameter and a depth cue, may affect the user's view of the augmented world. If focus depth is not adjusted properly, it may result in vision-based difficulties and reduce speed, accuracy, and comfort while using an augmented reality display. Thus, the second goal of this thesis was to study the effect of focus depth on task performance in augmented reality systems. In augmented reality environments, real-world and virtual information are found at different distances from the user. To focus at different depths, the user's eye needs to accommodate and converge, which may strain the eye and degrade performance on tasks. However, no research in augmented reality has explored this issue. Hence, the third goal of this thesis was to determine if distance of virtual information from the user impacts task performance. To accomplish these goals, a 3x3x3 within subjects design was used. The experimental task for the study required the user to repeatedly switch eye focus between the virtual text and real-world text. A monocular see-through head- mounted display was used for this research. Results of this study revealed that switching between real-world and virtual information in augmented reality is extremely difficult when information is displayed at optical infinity. Virtual information displayed at optical infinity may be unsuitable for tasks of the nature used in this research. There was no impact of focus depth on user task performance and hence it is preliminarily recommended that manufacturers of head-mounted displays may only need to make fixed focus depth displays; this clearly merits additional intensive research. Further, user task performance was better when focus depth, virtual information, and real-world information were all at the same distance from the user as compared to conditions when they were mismatched. Based on this result we recommend presenting virtual information at the same distance as real-world information of interest. / Master of Science
140

First Principles Studies of Nano-Scale Phenomena At Surfaces: From Characteristics of Single Atom Catalysts to Molecular Structure Formation

Austin, Dave I 01 January 2024 (has links) (PDF)
The dissertation explores the electronic structures induced by the adsorption of atoms and molecules on surfaces. It focuses on the physical and chemical properties of dispersed metal atom sites on oxide surfaces and the formation of novel molecular structures at hybrid organic-inorganic interfaces. The study uses density functional theory (DFT) calculations to simulate atomic-scale behaviors and aims to contribute to understanding reaction mechanisms and enhancing catalytic activity. Part one investigates the local environments of single platinum atoms on a cerium oxide surface by analyzing their physical and electronic properties. The next part studies the local environments of single platinum atoms dispersed on a cerium oxide surface. Part two compares the water-gas shift reaction for a platinum atom coordinated with a 10-phenanthroline-5,6-dione ligand on titanium oxide with that on a single platinum atom on a titanium oxide surface. It investigates the effect of vacancies in titanium oxide on the electronic structure of platinum and its reactivity. Part three explores the electronic structure of bistable molecules and their potential as molecular switches. Part four analyzes the patterns in scanning tunneling microscope (STM) images of an organic molecule layer on Au(111) and demonstrates electron confinement despite a weak interaction between the molecular layer and the Au surface.

Page generated in 0.0474 seconds