1 |
Álgebras de Lie e aplicações à sistemas alternantes /Nascimento, Rildo Pinheiro do. January 2005 (has links)
Orientador: Geraldo Nunes Silva / Banca: Antonio Carlos Gardel Leitão / Banca: Fernando Manuel Ferreira Lobo Pereira / Resumo: Neste trabalho é feito um estudo aprofundado da estabilidade de sistemas alternantes, principalmente via teoria de Lie. Inicialmente são apresentados os principais conceitos básicos da álgebra de Lie, necessários para o estudo dos critérios de estabilidade dos sistemas alternantes. Depois são discutidos critérios de estabilidade para sistemas alternantes. É feita a exposição da demonstração de que para todo sistema linear da forma ? x = Apx p = 1, 2, ...,N, com as matrizes Ap assintóticamente estáveis e comutativas duas a duas, existe uma função de Lyapunov quadrática comum. Uma condição suficiente para estabilidade assintótica de um sistema linear alternante é apresentada em termos da álgebra de Lie gerada por uma família infinita de matrizes. A saber, se esta álgebra de Lie é solúvel, então o sistema alternante é estável para uma mudança arbitrária de sinal. Em seguida são estudadas condições mais fracas. Supondo que a álgebra de Lie não é solúvel, mas é decomponível na soma de um ideal solúvel e uma subálgebra com grupo de Lie compacto, então o sistema alternante é globalmente exponencialmente uniformemente estável. Entretanto, se o grupo de Lie não for compacto, verifica-se que é possível gerar uma família finita de matrizes estáveis tais que o correspondente sistema linear alternante não é estável. Finalmente, os resultados correspondentes de estabilidade local para sistemas alternantes não lineares são apresentados. / Abstract: In this work it is undertaken a deep study of stability for switched systems, mainly via Lie algebraic Theory. At first, the basic concepts and results from Lie algebra necessary for the study of stability of switched systems are presented. Criteria for stability are discussed. It is also done an exposition of the proof that all linear systems ? x = Apx, p = 1, 2, ...,N, with stable and pairwisely commutative matrices Ap, have common quadratic Lyapounov functions. A sufficient condition for asymptotic stability of switched linear systems is presented in term of the Lie algebra generated by a family infinite matrices. That is, if this Lie algebra is solvable, then the switched systems are stable for an arbitrary change of sinal. Next weaker conditions are studied. If the Lie algebra is decomposable into two subalgebras in which one is a solvable ideal and the other has a compact Lie group, then the switched systems are globally exponentially uniformly stable. However, if the Lie group is not compact, it is also possible to generate a finite family of stable matrices such that the corresponding switched linear systems are not stable. Finally, corresponding local stability results are presented for nonlinear systems. / Mestre
|
2 |
Sliding Mode Control Design for Mismatched Uncertain Switched SystemsLiu, Hong-Yi 15 February 2012 (has links)
Based on the Lyapunov stability theorem, a sliding mode control design methodology is proposed in this thesis for a class of perturbed switched systems. The control of the systems is rest restricted to switching between two different constant values. New sliding mode reaching conditions are proposed for the controllers so that the controlled systems can enter the sliding mode in finite time. Once the switched control system is in the sliding mode, the stability of the system is guaranteed by choosing a suitable sliding surface. In addition, a method for alleviating the infinite switching phenomenon is also provided in this thesis. Finally, a numerical and a practical example with computer simulation results are given for demonstrating the feasibility of the proposed control scheme.
|
3 |
Real-time optimal control of autonomous switched systemsDing, Xu Chu 13 November 2009 (has links)
This thesis provides a real-time algorithmic optimal control framework for autonomous switched systems. Traditional optimal control approaches for autonomous switched systems are open-loop in nature. Therefore, the switching times of the system can not be adjusted or adapted when the system parameters or the operational environments change. This thesis aims to close this loop, and apply adaptations to the optimal switching strategy based on new information that can only be captured on-line. One important contribution of this work is to provide the means to allow feedback (in a general sense) to the control laws (i.e. the switching times) of the switched system so that the control laws can be updated to maintain optimality of the switching-time control inputs. Furthermore, convergence analyses for the proposed algorithms are presented. The effectiveness of the real-time algorithms is demonstrated by an application in optimal formation and coverage control of a networked system. This application is implemented on a realistic simulation framework consisting of a number of Unmanned Aerial Vehicles (UAVs) that interact in a virtual 3D world.
|
4 |
Álgebras de Lie e aplicações à sistemas alternantesNascimento, Rildo Pinheiro do [UNESP] 05 September 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-09-05Bitstream added on 2014-06-13T20:16:05Z : No. of bitstreams: 1
nascimento_rp_me_sjrp.pdf: 368298 bytes, checksum: d1ffd79129c70e6a0b4236136ff5e58e (MD5) / Neste trabalho é feito um estudo aprofundado da estabilidade de sistemas alternantes, principalmente via teoria de Lie. Inicialmente são apresentados os principais conceitos básicos da álgebra de Lie, necessários para o estudo dos critérios de estabilidade dos sistemas alternantes. Depois são discutidos critérios de estabilidade para sistemas alternantes. É feita a exposição da demonstração de que para todo sistema linear da forma ? x = Apx p = 1, 2,...,N, com as matrizes Ap assintóticamente estáveis e comutativas duas a duas, existe uma função de Lyapunov quadrática comum. Uma condição suficiente para estabilidade assintótica de um sistema linear alternante é apresentada em termos da álgebra de Lie gerada por uma família infinita de matrizes. A saber, se esta álgebra de Lie é solúvel, então o sistema alternante é estável para uma mudança arbitrária de sinal. Em seguida são estudadas condições mais fracas. Supondo que a álgebra de Lie não é solúvel, mas é decomponível na soma de um ideal solúvel e uma subálgebra com grupo de Lie compacto, então o sistema alternante é globalmente exponencialmente uniformemente estável. Entretanto, se o grupo de Lie não for compacto, verifica-se que é possível gerar uma família finita de matrizes estáveis tais que o correspondente sistema linear alternante não é estável. Finalmente, os resultados correspondentes de estabilidade local para sistemas alternantes não lineares são apresentados. / In this work it is undertaken a deep study of stability for switched systems, mainly via Lie algebraic Theory. At first, the basic concepts and results from Lie algebra necessary for the study of stability of switched systems are presented. Criteria for stability are discussed. It is also done an exposition of the proof that all linear systems ? x = Apx, p = 1, 2, ...,N, with stable and pairwisely commutative matrices Ap, have common quadratic Lyapounov functions. A sufficient condition for asymptotic stability of switched linear systems is presented in term of the Lie algebra generated by a family infinite matrices. That is, if this Lie algebra is solvable, then the switched systems are stable for an arbitrary change of sinal. Next weaker conditions are studied. If the Lie algebra is decomposable into two subalgebras in which one is a solvable ideal and the other has a compact Lie group, then the switched systems are globally exponentially uniformly stable. However, if the Lie group is not compact, it is also possible to generate a finite family of stable matrices such that the corresponding switched linear systems are not stable. Finally, corresponding local stability results are presented for nonlinear systems.
|
5 |
Exponential Stability of Intrinsically Stable Dynamical Networks and Switched Networks with Time-Varying Time DelaysReber, David Patrick 01 April 2019 (has links)
Dynamic processes on real-world networks are time-delayed due to finite processing speeds and the need to transmit data over nonzero distances. These time-delays often destabilize the network's dynamics, but are difficult to analyze because they increase the dimension of the network.We present results outlining an alternative means of analyzing these networks, by focusing analysis on the Lipschitz matrix of the relatively low-dimensional undelayed network. The key criteria, intrinsic stability, is computationally efficient to verify by use of the power method. We demonstrate applications from control theory and neural networks.
|
6 |
Extensão do princípio de invariância para sistemas chaveados contínuos no tempo / Extension of the invariance principle for continuos time switched systemsValentino, Michele Cristina 01 November 2013 (has links)
Este trabalho apresenta uma extensão do princípio de invariância para sistemas chaveados contínuos no tempo. Esta extensão fornece estimativas de atratores e suas respectivas áreas de atração para sistemas chaveados compostos por um número finito de subsistemas, a qual é obtida através de uma função auxiliar comum e múltiplas funções auxiliares que desempenham o mesmo papel que as funções de Lyapunov. As principais características desses novos resultados, são que a derivada da função auxiliar ou das múltiplas funções auxiliares podem assumir valores positivos em alguns conjuntos e também são usados para analisar o comportamento assintótico da solução do sistema chaveado. Resultados para sistemas chaveados com subsistemas com incertezas paramétricas também foram obtidos. Neste caso, as estimativas dos atratores e suas respectivas áreas de atração independem do parâmetro incerto. Analisando as propriedades da função auxiliar comum ao longo de um sistema formado pela combinação convexa de todos os subsistemas, os resultados passam a fornecer estimativas de atratores e suas áreas de atração mesmo na presença de subsistemas que não são ultimamente limitados. Este último resultado pode não evitar o chaveamento rápido, então surge o problema da existência da solução. Esta dificuldade pôde ser superada com o uso da teoria de sistemas descontínuos para garantir que sua solução seja definida para todo tempo mesmo que o chaveamento rápido ocorra. Portanto, uma escolha apropriada da lei de chaveamento possibilita o uso da solução de Krasovskii para garantir a existência da solução para todo tempo. Ainda, representando cada subsistema por um modelo fuzzy T-S, o comportamento assintótico da solução do sistema chaveado pôde ser estudado apenas verificando propriedades de alguns conjuntos do espaço de estado e a factibilidade de um conjunto de desigualdades matriciais lineares. / This work presents an extension of the invariance principle for continuous time switched systems. This extension is useful to obtain estimates of the attractor and basin of attraction for switched systems composed by a finite number of subsystems, which are obtained by using a common auxiliary function or multiple auxiliary functions which play the same hole as the Lyapunov function. The main feature of these new results are that the common auxiliary function or the multiple auxiliary functions can be positive in some sets and are used to analyze the asymptotic behavior of the switching solution. Results for switched systems with parametric uncertainties were also obtained. The estimates of the attractor and basin of attraction does not depend on the uncertain parameter. Analysing the auxiliary function along the solutions of the convex combination of the subsystems, estimates of the attractor and basin of attraction for switched systems with subsystems which are not necessarily ultimately bounded were given. This last result can not avoid the fast switching, then the switched solution may not exist for all time. This difficulty was overcome with the use of the theory of discontinuous systems to guarantee the existence of the switching system solution for all time. Furthemore, using a T-S fuzzy model approach, the asymptotic behavior of the switched solution could be analyzed only by checking properties of some sets and the feasibility of a set of linear matrix inequalities.
|
7 |
Extensão do princípio de invariância para sistemas chaveados contínuos no tempo / Extension of the invariance principle for continuos time switched systemsMichele Cristina Valentino 01 November 2013 (has links)
Este trabalho apresenta uma extensão do princípio de invariância para sistemas chaveados contínuos no tempo. Esta extensão fornece estimativas de atratores e suas respectivas áreas de atração para sistemas chaveados compostos por um número finito de subsistemas, a qual é obtida através de uma função auxiliar comum e múltiplas funções auxiliares que desempenham o mesmo papel que as funções de Lyapunov. As principais características desses novos resultados, são que a derivada da função auxiliar ou das múltiplas funções auxiliares podem assumir valores positivos em alguns conjuntos e também são usados para analisar o comportamento assintótico da solução do sistema chaveado. Resultados para sistemas chaveados com subsistemas com incertezas paramétricas também foram obtidos. Neste caso, as estimativas dos atratores e suas respectivas áreas de atração independem do parâmetro incerto. Analisando as propriedades da função auxiliar comum ao longo de um sistema formado pela combinação convexa de todos os subsistemas, os resultados passam a fornecer estimativas de atratores e suas áreas de atração mesmo na presença de subsistemas que não são ultimamente limitados. Este último resultado pode não evitar o chaveamento rápido, então surge o problema da existência da solução. Esta dificuldade pôde ser superada com o uso da teoria de sistemas descontínuos para garantir que sua solução seja definida para todo tempo mesmo que o chaveamento rápido ocorra. Portanto, uma escolha apropriada da lei de chaveamento possibilita o uso da solução de Krasovskii para garantir a existência da solução para todo tempo. Ainda, representando cada subsistema por um modelo fuzzy T-S, o comportamento assintótico da solução do sistema chaveado pôde ser estudado apenas verificando propriedades de alguns conjuntos do espaço de estado e a factibilidade de um conjunto de desigualdades matriciais lineares. / This work presents an extension of the invariance principle for continuous time switched systems. This extension is useful to obtain estimates of the attractor and basin of attraction for switched systems composed by a finite number of subsystems, which are obtained by using a common auxiliary function or multiple auxiliary functions which play the same hole as the Lyapunov function. The main feature of these new results are that the common auxiliary function or the multiple auxiliary functions can be positive in some sets and are used to analyze the asymptotic behavior of the switching solution. Results for switched systems with parametric uncertainties were also obtained. The estimates of the attractor and basin of attraction does not depend on the uncertain parameter. Analysing the auxiliary function along the solutions of the convex combination of the subsystems, estimates of the attractor and basin of attraction for switched systems with subsystems which are not necessarily ultimately bounded were given. This last result can not avoid the fast switching, then the switched solution may not exist for all time. This difficulty was overcome with the use of the theory of discontinuous systems to guarantee the existence of the switching system solution for all time. Furthemore, using a T-S fuzzy model approach, the asymptotic behavior of the switched solution could be analyzed only by checking properties of some sets and the feasibility of a set of linear matrix inequalities.
|
8 |
Qualitative Studies of Nonlinear Hybrid SystemsLiu, Jun January 2010 (has links)
A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance.
The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems.
Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior.
Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems.
Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay.
Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are
related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions.
Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results.
|
9 |
Qualitative Studies of Nonlinear Hybrid SystemsLiu, Jun January 2010 (has links)
A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance.
The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems.
Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior.
Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems.
Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay.
Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are
related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions.
Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results.
|
10 |
Projeto de controle robusto para sistemas chaveados via LMIs /Tello, Ivan Francisco Yupanqui January 2017 (has links)
Orientador: Rodrigo Cardim / Resumo: Neste trabalho são apresentados uma série de resultados relacionados com as técnicas de controle para sistemas lineares chaveados incertos que asseguram índices de desempenho e custos garantidos no projeto. Inicialmente a técnica abordada para este estudo consiste na utilização das desigualdades de Lyapunov-Metzler e as propriedades dos sistemas Estritamente Reais Positivos (ERP). São abordados os sistemas Lyapunov-Metzler-ERP (LMERP), que permitem o desenvolvimento de um método de projeto de estabilização para sistemas que apresentam comutação e incertezas no modelo, usando para isto a realimentação do vetor de estado. A análise de estabilidade é descrita por meio de Desigualdades Matriciais Lineares (em inglês: Linear Matrix Inequalities), LMIs, que, quando factíveis, são facilmente resolvidas por meio de ferramentas disponíveis de programação convexa. Neste trabalho trata-se também da síntese via realimentação de estado com chaveamento no ganho que assegura o critério de desempenho Hoo. Para a validação das estratégias de controle mencionadas foram realizadas simulações e experimentos práticos em um sistema de suspensão ativa de bancada e em um sistema ball balancer, equipamentos fabricados pela Quanser. Os resultados comprovam a eficácia dos método propostos tanto nas simulações quanto nos testes realizados em bancada. / Mestre
|
Page generated in 0.0639 seconds