• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Régulation de l'activation de lymphocytes B / cellules plasmatiques pendant le rejet chronique : Le rôle de SYK dans la modulation de Mcl-1 / Regulating the activation of B lymphocytes during chronic antibody mediated rejection : The role of SYK in modulating Mcl-1

Roders, Nathalie 06 December 2017 (has links)
L'insuffisance rénale est un problème majeur de santé publique et la transplantation rénale est l’option thérapeutique principale, mais elle comporte le risque de rejet d'organe. Les cellules B jouent un rôle important dans le rejet médié par les anticorps (AMR). Au cours de l'AMR chronique, les structures lymphoïdes tertiaires, semblables aux centres germinatifs (GC), apparaissent dans l'organe rejeté, associées à la production des plasmocytes et des lymphocytes B mémoires spécifiques du donneur. Ces populations de lymphocyte B sont souvent mal contrôlées par les traitements actuels. La myeloid cell leukemia 1 (Mcl-1), un membre anti-apoptotique de la famille de B-cell lymphoma 2 (Bcl-2), est essentiel pour maintenir l’organisation de GC et de la différenciation des cellules B. Nous rapportons ici l'infiltration de cellules B exprimant Mcl-1 dans le rein de patients atteints d'AMR chronique, comme cela a été observé pour les cellules (pré) GC. Suite à l’abrogation de la signalisation du récepteur des cellules B (BCR), par l'inhibition de la spleen tyrosine kinase (SYK) nous avons observé une diminution de la viabilité des cellules GC, par l'intermédiaire d'une régulation de Mcl-1. La régulation négative de Mcl-1 est coordonnée au niveau de la transcription, potentiellement par l'intermédiaire du transducteur de signal et de l'activateur de la transcription 3 (STAT3), comme cela a été observé par (1) une translocation altérée de STAT3 dans le noyau suivant l'inhibition de SYK, et (2) les niveaux inférieurs de transcription de Mcl-1. Par ailleurs, la surexpression de Mcl-1 inhibe l'apoptose après l'inhibition du SYK. Des études avec des cellules B primaires, issues d'amygdales, ont confirmé que l'inhibition de SYK a diminué la survie cellulaire. Nous avons également constaté que l'inhibition du SYK a diminué les niveaux de protéines Mcl-1 dans les cellules B primaire, et que l’activation de ces cellules a été inhibée, tel que déterminé par l'expression de CD80 et des taux inférieurs de sécrétion d'IgG dans les cellules B primaires activées in vitro. Nos travaux suggèrent que la voie SYK-Mcl-1 peut offrir de nouvelles opportunités pour le traitement et la prévention de l'AMR / Renal failure is a major public health concern and renal transplantation is the main therapeutic option, however it comes with the risk of organ rejection. B-cells play an important role in antibody-mediated rejection (AMR). During chronic AMR, tertiary lymphoid germinal center (GC)-like structures appear in the rejected organ, associated with de novo production of donor-specific plasma and memory B-cells. Which are B-cell populations that are often poorly controlled by current treatments. Myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic member of the B-cell lymphoma-2 (Bcl-2) family, is essential for maintaining the GC reaction and B-cell differentiation. We report here the infiltration of B-cells expressing Mcl-1 in the kidney of patients with chronic AMR, as observed for (pre-)GC cells. The impairment of B-cell receptor (BCR) signaling, by inhibition of spleen tyrosine kinase (SYK), reduced viability and Mcl-1 protein levels in GC like cells. This downregulation is coordinated at the transcriptional level, potentially via signal transducer and activator of transcription 3 (STAT3), as shown by (1) impaired translocation of STAT3 to the nucleus following SYK inhibition, and (2) the lower levels of Mcl-1 transcription upon STAT3 inhibition. Moreover, overexpression of Mcl-1 prevented cells from entering apoptosis after SYK inhibition. In vitro studies with primary tonsillar B-cells confirmed that SYK inhibition decreased cell survival. We also found that SYK inhibition decreased Mcl-1 protein levels in primary B-cells, and that B-cell activation was inhibited, as determined by CD80 expression and lower levels of IgG secretion in tonsillar B-cells activated in vitro. Overall, our data suggest that the SYK-Mcl-1 pathway may provide new opportunities for the treatment and prevention of AMR
12

Holography of SYK model

Gardell, Fredrik January 2018 (has links)
The aim of the thesis is to study the AdS/CFT correspondence and the AdS2/SYK connection as a very special example of the duality. While the first part of the thesis contains a review of AdS/CFT correspondence in arbitrary dimensions, the later parts focus on an interesting and speculative connection between the gravitational physics in two dimensional nearly AdS2 spacetime and one dimensional SYK model. More specifically, the connection is realized in terms of certain features of the SYK model in strong coupling limit, which resembles those of nearly AdS2 Jackiw-Teitelboim theory.
13

Etudes des altérations fonctionnelles de la signalisation dépendante du récepteur à l’antigène dans les cellules B de la Leucémie Lymphoïde Chronique / Functional alterations of antigen-induced B cell Receptor signaling in B cells from Chronic Lymphocytic Leukemia patients

Quettier, Maude 03 February 2015 (has links)
Des altérations de la signalisation en aval du récepteur à l’antigène (BCR) jouent un rôle clé dans la physiopathologie de la Leucémie Lymphoïde Chronique (LLC). Notre laboratoire a montré qu’une stimulation antigénique ex-vivo des cellules B-LLC conduit à une survie et une migration cellulaires différentielles qui distingue deux groupes de patients. Sur la base de ces résultats, nous avons montré que l’avantage de survie cellulaire en réponse à une stimulation antigénique observé dans un groupe est dépendant 1) d’un seuil imposé par les niveaux d’expression des effecteurs précoces (BCR, Syk et Zap70), de la capacité des cellules leucémiques à répondre en termes de phosphorylation de Syk, d’activation de la PLCƳ2, de mobilisation calcique et d’activation du facteur de transcription NFAT2 ; l’activation de la voie BCR/NFAT mesurée par la survie des cellules B-LLC ex-vivo étant corrélée à la survie globale des patients ; 2) de l’augmentation des niveaux de phosphorylation globale et spécifique de Syk, de la distribution subcellulaire de phospho-Syk, de la capacité de Syk à interagir avec des effecteurs positifs et négatifs et à les activer. De plus, notre étude sur la diminution de la migration des cellules B de LLC en réponse à une stimulation du BCR montre qu’elle dépend du taux d’internalisation du CXCR4 qui est régulé par l’activation des PI3Ks situées en amont des PKDs ; ces dernières activées phosphorylent le CXCR4 qui est alors internalisé. L’ensemble de ces données nous a permis de mieux définir les mécanismes moléculaires sous-jacents à une survie accrue et à une migration diminuée des cellules BLLC en réponse à une stimulation antigénique, de mettre en évidence d’éventuels biomarqueurs fonctionnels de stratification (pSyk et pPLCƳ2), de pointer de potentielles cibles thérapeutiques (NFATs et PKDs) et d’expliquer en partie l’action de drogues, comme le Fostamatinib et l’Idelalisib, utilisées en thérapie dans la LLC. / Altered B-cell antigen receptor (BCR) signaling pathways play a key role in chronic lymphocytic leukemia(CLL) pathophysiology. Our lab has previously shown that ex-vivo antigenic stimulation of CLL-B cells led todifferential cell survival and cell migration, which allowed the distinction between two groups of patients. Basedon these results, we evidenced that the cell survival advantage in response to BCR engagement from one groupdepends on 1) a critical threshold mediated by the early effector expression levels (BCR, Syk et Zap70), a BCR competency of the leukemic cells translated by Syk phosphorylation, PLCƳ2 activation, intracellular Ca2+mobilization and the transcription factor NFAT2 activation; this activated BCR/NFAT signaling cascade, which is reflected by the ex-vivo measurement of CLL cell survival, was correlated to the overall survival from CLLpatients; 2) increased levels of global and specific Syk phosphorylation, phospho-Syk subcellular distribution, Sykability to interact with positive and negative effectors and to activate them. Moreover, study of BCR stimulation mediated decreased migration in CLL B cells showed that it relied on CXCR4 internalization levels that were regulated by activated PI3Ks acting upstream of the PKDs; activation of the latters allowed CXCR4 phosphorylation and then its endocytosis. Altogether, these data allowed us to better understand the molecular mechanisms underlying the survival advantage and the decreased migration of CLL B cells in response to antigenic stimulation, to evidence eventual functional biomarkers of stratification (pSyk and pPLCƳ2), to point out potential therapeutic targets (NFATs and PKDs), and to partially explain how Fostamatinib and Idelalisib function as therapeutic drugs in CLL.
14

The role of the spleen tyrosine kinase in activating the MTORC1 pathway in pancreatic cancer cell lines

Villait, Akash 08 June 2020 (has links)
With a five-year survival rate of less than 5%, pancreatic cancer is one of the deadliest cancers. The most common activating mutations in pancreatic cancer are found in the KRAS gene, causing a constitutively-active KRAS protein in approximately 90% of pancreatic ductal adenocarcinomas (PDAC). PDAC-derived cell lines that harbor oncogenic KRAS mutations can be divided into two classes, KRAS dependent (or addicted) cells and KRAS independent cells. Oncogene dependency (or addiction) is a phenomenon where tu-mors require sustained activity of a single aberrantly activated gene despite the accumulation of multiple oncogenic lesions. In the case of PDAC, the single aberrantly activated gene is KRAS. KRAS independent cells have acquired various other oncogenic lesions that confer alternative cell survival signaling pathways to bypass oncogenic KRAS dependency. The Spleen Tyrosine Kinase (Syk) is highly expressed in KRAS dependent cells, while KRAS independent cells have low Syk expression. This pattern suggests that in KRAS dependent cells, constitutively active KRAS and Syk play a role in stimulating pro-survival pathways. One of these pro-survival pathways is known as mTORC1, which causes increased anabolic processes like protein and lipid synthesis. Accordingly, mTORC1 causes suppression of catabolic processes like autophagy. The net effect is in-creased cellular growth and proliferation. However, mTORC1 inhibitors have limited clinical efficacy, and potential therapeutic targets upstream of mTORC1 have drawn interest. Syk is a non-receptor tyrosine kinase that is an upstream activator of the mTORC1 pathway in hematopoietic malignancies. Through Syk inhibition studies using the small molecule PRT062607 (SYKi), we demonstrated that Syk is also involved in activating the mTORC1 pathway in KRAS dependent PDAC cells. However, the mechanism by which Syk-mediated activation of mTORC1 occurs is currently unknown. Moreover, it is unclear whether SYK kinase activity is required for the activation of the mTORC1 pathway. To address this issue, we introduced a single nucleotide mutation in the kinase do-main of Syk to render it kinase-inactive and found that Syk requires its kinase function to activate mTORC1. Studies using Syki also revealed that mTORC1 activity was also inhibited in KRAS independent PDAC cells that lack significant Syk expression. Interestingly, substrate specificity studies indicate that Syki also binds to and inhibits structurally similar protein tyrosine kinases such as the SRC Family Kinases (SFKs). Therefore, we designed an experiment to look for Syk and SFK cooperativity in regards to mTORC1 activation in PDAC cells. Our results indicate that the SFKs, Yes1 and Src display the most significant cooperative effect with Syk in activating the mTORC1 pathway. Src and Yes1 may even be involved in the upstream activation of Syk. To establish the physiological significance of Syk signaling in pancreatic cancer, it is important to establish model organisms that could be used for future studies. Thus, we test-ed Syk expression and function in PDAC cell lines derived from genetically-engineered mouse models (GEMM), which develop pancreatic cancer via oncogenic mutations in KRAS and TP53. We found that Syk is indeed expressed in murine PDAC cell lines and that the use of Syki in the murine PDAC cell lines results in decreased mTORC1 activity. These results recapitulate those obtained in human KRAS dependent PDAC cell lines. In summary, our studies show that Syk is a key regulator of mTORC1 signaling in human and mouse-derived pancreatic cancer cells. Syk kinase activity is required for mTORC1 activation. Finally, SFKs cooperate with Syk to promote robust mTORC1 activation. The mechanisms of SFK and Syk cooperativity in mTORC1 pathway activation will require further investigation. Additionally, our findings provide a strong rationale to study the effects of Syk kinase inhibition in physiologically-relevant murine models of pancreatic cancer. / 2021-06-08T00:00:00Z
15

Dendritic Cell-Derived TSLP Negatively Regulates HIF-1α and IL-1β during Dectin-1 signaling

Elder, Matthew J., Webster, Steve J., Fitzmaurice, Timothy J., Shaunak, Aran S.D., Steinmetz, Martin, Chee, Ronnie, Mallat, Ziad, Suzanne Cohen, E., Williams, David L., Hill Gaston, J. S., Goodall, Jane C. 01 January 2019 (has links)
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Thymic stromal lymphopoietin (TSLP) is a functionally pleotropic cytokine important in immune regulation, and TSLP dysregulation is associated with numerous diseases. TSLP is produced by many cell types, but has predominantly been characterized as a secreted factor from epithelial cells which activates dendritic cells (DC) that subsequently prime T helper (TH) 2 immunity. However, DC themselves make significant amounts of TSLP in response to microbial products, but the functional role of DC-derived TSLP remains unclear. We show that TSLPR signaling negatively regulates IL-1β production during dectin-1 stimulation of human DC. This regulatory mechanism functions by dampening Syk phosphorylation and is mediated via NADPH oxidase-derived ROS, HIF-1α and pro-IL-1β expression. Considering the profound effect TSLPR signaling has on the metabolic status and the secretome of dectin-1 stimulated DC, these data suggest that autocrine TSLPR signaling could have a fundamental role in modulating immunological effector responses at sites removed from epithelial cell production of TSLP.
16

Syk-dependent ERK Activation Regulates IL-2 and IL-10 Production by DC Stimulated with Zymosan

Slack, Emma C., Robinson, Matthew J., Hernanz-Falcón, Patricia, Brown, Gordon D., Williams, David L., Schweighoffer, Edina, Tybulewicz, Victor L., Reis e Sousa, Caetano 01 June 2007 (has links)
Zymosan is a particulate yeast preparation that elicits high levels of IL-2 and IL-10 from dendritic cells (DC) and engages multiple innate receptors, including the Syk-coupled receptor dectin-1 and the MyD88-coupled receptor TLR2. Here, we show that induction of IL-2 and IL-10 by zymosan requires activation of ERK MAP kinase in murine DC. Surprisingly, ERK activation in response to zymosan is completely blocked in Syk-deficient DC and unaffected by MyD88 deficiency. Conversely, ERK activation in response to the TLR2 agonist Pam3Cys is completely MyD88 dependent and unaffected by Syk deficiency. The inability of TLR2 ligands in zymosan to couple to ERK may explain the Syk dependence of the IL-2 and IL-10 response in DC and emphasises the importance of Syk-coupled pattern recognition receptors such as dectin-1 in the detection of yeasts. Furthermore, the lack of receptor compensation observed here suggests that responses induced by complex innate stimuli cannot always be predicted by the signalling pathways downstream of individual receptors.
17

The Regulation of Phosphorylation Events in Platelets

Getz, Todd Michael January 2012 (has links)
Platelets play a vital role in processes of hemostasis and thrombosis under physiological and pathological conditions. Following vascular damage, platelets will accumulate and stably adhere to exposed subendothelial matrixes. The binding of platelet surface receptor Glycoprotein VI (GPVI) to exposed collagen initiates a signaling cascade, which culminates in platelet activation. Stimulation of GPVI pathways results in the generation of thromboxane and causes the platelets to secrete their granule contents. This generated thromboxane as well as constituents released from dense granules such as ADP, and serotonin, play an essential role in potentiating the platelet response through activation of other surface receptor mediated pathways. Importantly, downstream of all these separate pathways, kinases become activated and play a crucial role in phosphorylating their substrates to elicit critical cellular responses. Previously published studies have established the importance for myosin kinase in its role for phosphorylating the myosin light chain (MLC) downstream of ADP receptors. These studies have shown MLC phosphorylation occurs rapidly and is essential for shape change following the stimulation of ADP receptors. Technological advances in antibody development have resulted in the generation of commercially available phospho-specific antibodies for MLC phosphorylated on either threonine (Thr) 18 or serine (Ser) 19. These antibodies allowed us to revisit these prior studies and address whether phosphorylation on MLC (Ser) 19 would elicit one response while phosphorylation on (Thr) 18 may result in another functional response. Our result show, that MLC is phosphorylated rapidly on (Ser) 19 and plays an important role in shape change downstream of Gq pathways, while MLC (Thr) 18 phosphorylation occurs at a slower rate downstream of G12/13 pathways and contributes to platelet dense granule secretion. Protein kinase C's (PKC) are serine/threonine kinase, which become activated following the stimulation of many of the platelet surface receptors. PKCs are classified into three groups, classical (α, βI, βII, γ), novel (δ, ε, η, θ), and atypical (ζ, ι, λ, μ) based on their cofactor requirements for activation. The classical PKCs, which require diacylglycerol and calcium for their activation were investigated using the specific inhibitor Go6976. Much to our surprise, we demonstrated that downstream of GPVI pathways, Go6976 caused non-selective inhibition of Spleen tyrosine kinase (Syk) activity. This inhibition of Syk activity resulted in a concentration-dependent reduction in phosphorylation of downstream molecules Lat and PLCγ2 as well as platelet aggregation and secretion. Stimulation of surface receptors GPVI, CLEC-2, GPIb, and FcRIIa, all lead to the activation of tyrosine kinase pathways. The role for Syk in these pathways is essential and in the absence of its activity these pathways are completely shut down. We inadvertently discovered dextran sulfate (DxS) actives platelets. Our results show that DxS activates a Src-dependent pathway which does not utilize surface receptors GPVI, CLEC-2, GPIb, or FcRIIa. Platelets pretreated with Syk inhibitors OXSI-2 or Go6976 failed to cause αIIbβ3 activation in response to convulxin, however, platelets activated with DxS under the same conditions retained the ability to activate αIIbβ3. In response to DxS, platelet aggregation, intracellular calcium mobilization, and αIIbβ3 activation were significantly inhibited in platelets pre-treated with PI-3K inhibitors. Taken together these results for the first time establish a novel tyrosine kinase pathway in platelets that cause fibrinogen receptor activation in a PI-3K dependent manner without a role for Syk. In conclusion, we have evaluated the role of myosin light chain kinase, Syk, and PI-3 kinase downstream of platelet receptor-mediated pathways. We have examined the phosphorylation status of several of their effector molecules and have correlated these events with their functional responses in platelets. Here we have highlighted several roles for platelet kinases and their relative importance in regulating platelet functional outcomes. / Physiology
18

Regulation of Protein Kinases (Syk and PKC zeta) in platelets

Mayanglambam, Azad January 2010 (has links)
Platelets are crucial components of the hemostatic machinery of the body. When the endothelial continuity is disrupted due to injury or atherosclerotic plaque rupture, one of the earliest responses to arrest the bleeding is the adhesion of circulating platelets to the exposed subendothelial collagen matrix. Subsequent intracellular signaling mediated downstream of various receptor systems leads to alpha IIb beta 3 activation, thromboxane generation, ADP release, etc., culminating in platelet clot or thrombus formation. The protein kinase family of enzymes mediates a significant number of these intracellular signaling events that culminate in platelet activation. These enzymes can be broadly classified into two classes- tyrosine kinases and serine/threonine kinases. Syk (spleen tyrosine kinase) is an important non-receptor tyrosine kinase present in platelets and plays an important role downstream of GPVI-FcR gamma chain receptor complex activation. We studied the effects of curcumin (diferuloylmethane), which is the active ingredient found in the herbal remedy and food spice turmeric, on the GPVI-mediated platelet activation. We have found that it significantly inhibits the kinase activity of Syk without affecting its phosphorylation. Pre-incubating the platelets with curcumin for only a minute resulted in a concentration-dependent inhibition of aggregation and secretion, with approximately 75% inhibition observed at 50 mM curcumin. Additionally, the activation-dependent phosphorylation of tyrosines 753/759 on PLC gamma2 and phosphorylation of tyrosine 191 on the transmembrane scaffold protein LAT, were inhibited (p<0.05). However, the phosphorylation of the activation loop tyrosines 525/526 on Syk and of the tyrosine 145 on intracellular adaptor molecule SLP-76 were not significantly affected. Furthermore, the inhibitory action of curcumin on the catalytic activity of Syk was independent of any of its effects on the thromboxane generation because all our studies were performed using aspirin-treated platelets. PKC zeta is an atypical member of the PKC family of serine/threonine kinases. In this study, we have confirmed that it is expressed in human platelets and is constitutively phosphorylated at the activation loop threonine 410 as well as the turn motif threonine 560, which is an autophosphorylation site. Phosphorylation at these two residues has been shown to be important for its kinase activity. Furthermore, agonist-mediated platelet aggregation under stirring condition results in dephosphorylation of the Thr410 residue, which can be prevented by blocking integrin alpha IIb beta 3 by its antagonist SC-57101 (p<0.01). The dephosphorylation of Thr410 can also be prevented by okadaic acid, a Ser/Thr protein phosphatase inhibitor, at concentrations above 100 nM. However, in PP1c gamma null mice, we did not observe any effect on the dephosphorylation, suggesting that other isoforms of PP1 or other classes of the phosphatases could be responsible for this phenomenon, at least in these knockout mice. The basal phosphorylation of Thr560, however, remained unaffected by agonist stimulation, integrin activation, integrin blockade, okadaic acid treatment and in the PP1c gamma null mice. It can be speculated that PKC zeta may be constitutively active under basal resting conditions and acts as a negative regulator of platelet activation or functional responses. The Thr560 autophosphorylation signal alone may not be sufficient to sustain its full enzymatic activity. / Physiology
19

TULA-2: A Novel Protein Tyrosine Phosphatase That Regulates Osteoclast Differentiation and Function

Back, Steven January 2014 (has links)
The human skeleton is a dynamic organ that serves multiple functions to maintain normal physiology and health. It protects vital organs, provides support for movement, houses marrow and maintains calcium homeostasis. The skeleton is maintained by the work of two cells with opposing functions: osteoblasts, cells that synthesize organic bone matrix and osteoclasts that degrade and resorb it. These cells interact with one another in a tightly regulated process known as the bone remodeling cycle. This cycle maintains the health of bone by removing and replacing weak or damaged bone and responding to stress loads by remodeling portions of the skeleton that require reinforcement. Osteoblasts differentiate from mesenchymal stem cells and respond to hormonal stimuli by synthesizing and secreting cytokines necessary for osteoclast differentiation. Osteoblasts may become embedded within mineralized matrix, becoming osteocytes, cells that can sense changes in mechanical loading and facilitate localization of the remodeling cycle. Osteoclasts differentiate from hematopoietic stem cells (HSC) when the cell surface receptors, c-FMS and RANK, are activated by ligands produced by osteoblasts, M-CSF and RANKL respectively. In addition to c-FMS and RANK stimulation, another calcium-mediated, co-stimulatory pathway must be activated to ensure proper osteoclast differentiation. This pathway is activated by two immunoreceptors, OSCAR and TREM-2 that interact with adaptor proteins termed FcRγ and DAP12 respectively. These adaptor proteins harbor immunoreceptor tyrosine-based activation motifs (ITAM), which exist on their cytoplasmic tail. Once the immunoreceptors are triggered, specific tyrosines within the ITAM motifs become phosphorylated and act as docking points for the tyrosine kinase, Syk. Once bound, Syk autophosphorylates and acts on its downstream targets. Syk dephosphorylation is, therefore, necessary to attenuate this signal to prevent over activation of osteoclasts. Recently, a novel tyrosine phosphatase, T-cell Ubiquitin ligand -2 (TULA-2) has been shown to dephosphorylate specific phosphotyrosine residues on Syk in various systems and has shown an increased specificity to dephosphorylate tyrosine 352. The goal of this project is to determine how TULA-2 mediated dephosphorylation of Syk regulates osteoclast differentiation and function. TULA-2 is a member of the TULA family of proteins, TULA and TULA-2. In spite of a significant homology and similar domain organization between TULA and TULA-2, only TULA-2 has significant phosphatase activity. Furthermore, whereas TULA is expressed only in lymphocytes, TULA-2 is expressed in most tissues albeit a higher level of expression is seen in cells of hematopoietic origin. In vivo analysis including Micro-computed tomography (Micro CT) and histomorphometry indicated that mice that lack both TULA and TULA-2 (DKO) have decreased bone mass compared to wild-type (WT) counterparts. An in vitro cell differentiation assay revealed that a larger population of osteoclast-like cells (OCL) could be cultivated from bone marrow isolated from DKO mice compared to OCL derived from WT bone marrow. An in vitro resorption pit assay revealed that DKO osteoclasts could resorb bone at a faster rate than WT counterparts. Additionally, over-expression of phosphatase-dead TULA-2 in WT osteoclasts increased the ability of the cells to resorb bone. At the molecular level, activation of the co-stimulatory pathway revealed increased tyrosine phosphorylation of Syk 352 in DKO pre-osteoclasts when compared to phosphorylation of Syk isolated from WT pre-osteoclasts. Cumulatively, the above data indicates that the absence of TULA-2 results in an increased signaling response leading to a larger population of hyperactive osteoclasts, which contributes to decreased bone mass in mice. These data suggest that the phosphatase activity of TULA-2 is required for negative regulation of bone resorption. / Cell Biology
20

Regulation der „spleen tyrosine kinase“ Syk im B-Zell-Antigen-Rezeptor-Signalweg / Regulation of the "spleen tyrosine kinase" Syk in the B-cell antigen receptor signaling pathway

Bohnenberger, Hanibal 14 January 2014 (has links)
No description available.

Page generated in 0.0748 seconds