• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein engineering of protein-A from Staphylococcus aureus

Popplewell, Andrew George January 1991 (has links)
No description available.
2

Synthetic RNA-based logic computation in mammalian cells / 哺乳類細胞における人工RNAを基盤とした論理計算

Matsuura, Satoshi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第21694号 / 医科博第98号 / 新制||医科||7(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 竹内 理, 教授 Shohab YOUSSEFIAN, 教授 藤渕 航 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology / 哺乳類合成生物学に資する直交タンパク質応答型mRNAスイッチ

Ono, Hiroki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医科学) / 甲第23818号 / 医科博第139号 / 新制||医科||9(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 萩原 正敏, 教授 藤渕 航, 教授 上杉 志成 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

Bacteriophage technologies and their application to synthetic gene networks

Krom, Russell-John 03 November 2015 (has links)
Synthetic biology, a field that sits between Biology and Engineering disciplines, has come into its own in the last decade. The decreasing cost of DNA synthesis has lead to the creation of larger and more complex synthetic gene networks, engineered with functional goals rather than simple demonstration. While many methods have been developed to reduce the time required to produce complex networks, none focus upon the considerable tuning needed to turn structurally correct networks into functional gene networks. To this end, we created a Plug-and-Play synthetic gene network assembly that emphasizes character-driven iteration for producing functional synthetic gene networks. This platform enables post-construction modification and easy tuning of networks through its ability to swap individual parts. To demonstrate this system, we constructed a functional bistable genetic toggle and transformed it into two functionally distinct synthetic networks. Once these networks have been created and tuned at the bench, they next must be delivered to bacteria in their target environment. While this is easy for industrial applications, delivering synthetic networks as medical therapeutics has a host of problems, such as competing microbes, the host immune system, and harsh microenvironments. Therefore, we employed bacteriophage technologies to deliver functional synthetic gene networks to specific bacterial strains in various microenvironments. We first sought to deliver functional genetic networks to bacteria present in the gut microbiome. This allows for functionalization of these bacteria to eventually sense disease states and secrete therapeutics. As a proof of concept a simple circuit was created using the Plug-and-Play platform and tested before being moved into the replicative form plasmid of the M13 bacteriophage. Bacteriophage particles carrying this network were used to infect gut bacteria of mice. Infection and functionality of the synthetic network was monitored from screening fecal samples. Next, we employed phagemid technologies to deliver high copy plasmids expressing antibacterial networks to target bacteria. This allows for sustained expression of antibacterial genes that cause non-lytic bacterial death without reliance upon traditional small molecule antibiotics. Phagemid particles carrying our antibacterial networks were then tested against wild type and antibiotic-resistant bacteria in an in vitro and in vivo environment.
5

Investigating R gene evolution by meiotic recombination using synthetic gene clusters in Arabidopsis

Sun, Jian 06 June 2008 (has links)
Plant gene families organized as linked clusters are capable of evolving by a process of unequal crossing-over. This results in the formation of chimeric genes that may impart a novel function. However, the frequency and functional consequences of these unequal cross-over events are poorly characterized. Plant disease resistance genes (R genes) genes are frequently organized as gene clusters. In this study, I constructed an elaborately designed reconfigurable synthetic RPP1 (for resistance to Paranospora parasitica) gene cluster (synthRPP1) to model R gene evolution by meiotic recombination. This experimental design utilizes gain-of-luciferase phenotype (luc+) to identify and isolate recombinant R genes and uses two alternatively marked alleles to distinguish and measure different types of meiotic recombination (intra- vs. inter-chromosomal). Two putative single copy transgenic plants containing the synthRPP1 gene cluster were generated. These synthRPP1 gene clusters were reconfigured in vivo by two kinds of site-specific recombination systems (CRE/Lox, FLP/FRT) to generate two alternative versions of the synthRPP1 gene clusters in vivo. These lines, as well as others being developed, will be used in future genetic crosses to identify and characterize plants expressing chimeric RPP1 genes. My second area of research was to use a previously developed synthetic RBCSB gene cluster (synthRBCSB) gene cluster to investigate the relative frequency of meiotic unequal crossing over between paralogous genes located on either homologous chromosomes (homozygous lines) or sister chromatids (hemizygous lines). In contrast to published somatic recombination frequencies using a different reporter gene system, no statistically significant difference of meiotic unequal crossing over was observed between homo- and hemi-zygous synthRBCSB lines. This result suggests that meiotic unequal crossing-over between paralogs located on homologous chromosomes occurs at about the same frequency as paralogs located on sister chromatids. To investigate the rate of somatic recombination in synthRBCSB lines, a QRT-PCR method was developed to estimate the frequency of somatic recombination. Preliminary results suggest that the somatic recombination frequency was about 10,000 fold higher than meiotic recombination in the same generation. Moreover, two of five cloned chimeric genes that formed by somatic recombination indicated a different distribution of resolution sites than those observed in meiotic recombination. This finding suggests there are significant differences in both the frequency and character of somatic versus meiotic unequal crossing-over between paralogous genes in Arabidopsis. / Ph. D.
6

Design and Engineering of Synthetic Gene Networks

January 2017 (has links)
abstract: Synthetic gene networks have evolved from simple proof-of-concept circuits to complex therapy-oriented networks over the past fifteen years. This advancement has greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a mechanism that cells use to achieve a discrete number of mutually exclusive states in response to environmental inputs. However, complex contextual connections of gene regulatory networks in natural settings often impede the experimental establishment of the function and dynamics of each specific gene network. In this work, diverse synthetic gene networks are rationally designed and constructed using well-characterized biological components to approach the cell fate determination and state transition dynamics in multistable systems. Results show that unimodality and bimodality and trimodality can be achieved through manipulation of the signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to communicate with each other. Moreover, a synthetic quadrastable circuit is also built and experimentally demonstrated to have four stable steady states. Experiments, guided by mathematical modeling predictions, reveal that sequential inductions generate distinct cell fates by changing the landscape in sequence and hence navigating cells to different final states. Circuit function depends on the specific protein expression levels in the circuit. We then establish a protein expression predictor taking into account adjacent transcriptional regions’ features through construction of ~120 synthetic gene circuits (operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks. These combined results illustrate applications of synthetic gene networks to understand the cell fate determination and state transition dynamics in multistable systems. A protein-expression predictor is also developed to evaluate and tune circuit dynamics. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2017
7

Advancing Synthetic Gene Regulators Development with High-Throughput Sequencing Technologies / ハイスループットシークエンシング技術を用いた革新的遺伝子制御法の開発に関する研究

Anandhakumar, Chandran 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19260号 / 理博第4115号 / 新制||理||1592(附属図書館) / 32262 / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 三木 邦夫, 教授 藤井 紀子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
8

Chemical Biology Approaches for Regulating Eukaryotic Gene Expression / ケミカルバイオロジー的アプローチによる真核細胞の遺伝子発現制御法の検討

Junetha, Syed Jabarulla 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19261号 / 理博第4116号 / 新制||理||1592(附属図書館) / 32263 / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 三木 邦夫, 教授 藤井 紀子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
9

PCR-based Synthesis of Codon Optimized cry2Aa Gene for Production of Shoot and Fruit Borer (Leucinodes orbonalis) Resistant Eggplant (Solanum melongena L.) Cultivars

Gupta, Rahul 20 January 2006 (has links)
Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee) is a major limiting factor in commercial cultivation of eggplant in southeast Asia. Extensive use of pesticides as well as the conventional breeding methods have been ineffective in controlling the borer so there is a need for Integrated Pest Management (IPM) strategies for its control. Bacillus thuringiensis (Bt) is known to produce a variety of insecticidal crystal proteins toxic to lepidopteran, dipteran and coleopteran pests. The Cry2Aa protein has been found to be more toxic to brinjal shoot and fruit borer than Cry1Ab. My objective was to develop eggplant cultivars that express a codon-optimized cry2Aa gene, the sequence of which is based on that of an Indian isolate of Bt, with the eventual goal of producing fully resistant cultivars. The cry2Aa gene was modified for optimal expression in eggplant using the codon usage frequencies based on solanaceous sequences (eggplant, tomato and pepper). The GC content was increased from 34.3% in the native gene to 41.3% in the optimized gene, thus removing the AT-rich regions that are typical for Bt cry genes. Also, other mRNA destabilizing and hairpin forming structure sequences were removed. The gene was synthesized in four different parts with complementary restriction sites. A total of 152 oligonucleotides (oligos) was used to assemble the 1.9 kb gene using dual asymmetric (DA) and overlap extension (OE) PCR techniques. The individual parts were subsequently ligated using the complementary restriction sites and inserted into vector pCAMBIA 1302. Also, the transformation efficiency of 12 different eggplant cultivars was tested using plasmid pHB2892 to predict utility for transformation with the synthetic cry2Aa. / Master of Science

Page generated in 0.056 seconds