• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 3
  • 1
  • Tagged with
  • 49
  • 49
  • 24
  • 24
  • 17
  • 15
  • 14
  • 12
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Crater 2: An Extremely Cold Dark Matter Halo

Caldwell, Nelson, Walker, Matthew G., Mateo, Mario, Olszewski, Edward W., Koposov, Sergey, Belokurov, Vasily, Torrealba, Gabriel, Geringer-Sameth, Alex, Johnson, Christian I. 10 April 2017 (has links)
We present results from MMT/Hectochelle spectroscopy of 390 red giant candidate stars along the line of sight to the recently discovered Galactic satellite Crater 2. Modeling the joint distribution of stellar positions, velocities, and metallicities as a mixture of Crater 2 and Galactic foreground populations, we identify similar to 62 members of Crater 2, for which we resolve a line-of-sight velocity dispersion of sigma(nu los) = 2.7(-0.3)(+0.3) km s(-1) and a. mean velocity of <nu(los)> = 87.5(-0.4)(+0.4) km s(-1) (solar rest frame). We also resolve a metallicity dispersion of sigma([Fe/H]) = 0.22(-0.03)(+0.04) dex and a mean of <[Fe/H]> = 1.98(-0.1)(+0.1) dex that is 0.28 +/- 0.14 dex poorer than estimated from photometry. Despite Crater 2's relatively large size (projected halflight radius R-h similar to 1 kpc) and intermediate luminosity (M-V similar to -8), its velocity dispersion is the coldest that has been resolved for any dwarf galaxy. These properties make Crater 2 the most extreme low-density outlier in dynamical as well as structural scaling relations among the Milky Way's dwarf spheroidals. Even so, under assumptions of dynamical equilibrium and negligible contamination by unresolved binary stars, the observed velocity distribution implies a gravitationally dominant dark matter halo, with a dynamical mass of. 4.4(-0.9)(+1.2) x 10(6) M-circle dot and a mass-to-light ratio of 53(-11)(+15) M-circle dot/L-V,L-circle dot enclosed within a radius of similar to 1 kpc, where the equivalent circular velocity is 4.3(-0.5)(+0.5) km s(-1).
22

OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA

Nord, B., Buckley-Geer, E., Lin, H., Diehl, H. T., Helsby, J., Kuropatkin, N., Amara, A., Collett, T., Allam, S., Caminha, G. B., De Bom, C., Desai, S., Dúmet-Montoya, H., da S. Pereira, M. Elidaiana, Finley, D. A., Flaugher, B., Furlanetto, C., Gaitsch, H., Gill, M., Merritt, K. W., More, A., Tucker, D., Saro, A., Rykoff, E. S., Rozo, E., Birrer, S., Abdalla, F. B., Agnello, A., Auger, M., Brunner, R. J., Kind, M. Carrasco, Castander, F. J., Cunha, C. E., da Costa, L. N., Foley, R. J., Gerdes, D. W., Glazebrook, K., Gschwend, J., Hartley, W., Kessler, R., Lagattuta, D., Lewis, G., Maia, M. A. G., Makler, M., Menanteau, F., Niernberg, A., Scolnic, D., Vieira, J. D., Gramillano, R., Abbott, T. M. C., Banerji, M., Benoit-Lévy, A., Brooks, D., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., D’Andrea, C. B., Dietrich, J. P., Doel, P., Evrard, A. E., Frieman, J., Gaztanaga, E., Gruen, D., Honscheid, K., James, D. J., Kuehn, K., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Neilsen, E., Nichol, R. C., Ogando, R., Plazas, A. A., Romer, A. K., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Walker, A. R., Wester, W., Zhang, Y. 05 August 2016 (has links)
We report the observation and confirmation of the first group-and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z similar to 0.80-3.2 and in i-band surface brightness i(SB) similar to 23-25 mag arcsec(-2) (2 '' aperture). For each of the six systems, we estimate the Einstein radius theta(E) and the enclosed mass M-enc, which have ranges theta(E) similar to 5 ''-9 '' and M-enc similar to 8 x 10(12) to 6 x 10(13)M(circle dot), respectively.
23

ELEVEN MULTIPLANET SYSTEMS FROM K2 CAMPAIGNS 1 AND 2 AND THE MASSES OF TWO HOT SUPER-EARTHS

Sinukoff, Evan, Howard, Andrew W., Petigura, Erik A., Schlieder, Joshua E., Crossfield, Ian J. M., Ciardi, David R., Fulton, Benjamin J., Isaacson, Howard, Aller, Kimberly M., Baranec, Christoph, Beichman, Charles A., Hansen, Brad M. S., Knutson, Heather A., Law, Nicholas M., Liu, Michael C., Riddle, Reed, Dressing, Courtney D. 09 August 2016 (has links)
We present a catalog of 11 multiplanet systems from Campaigns 1 and 2 of the K2 mission. We report the sizes and orbits of 26 planets split between seven two-planet systems and four three-planet systems. These planets stem from a systematic search of the K2 photometry for all dwarf stars observed by K2 in these fields. We precisely characterized the host stars with adaptive optics imaging and analysis of high-resolution optical spectra from Keck/HIRES and medium-resolution spectra from IRTF/SpeX. We confirm two planet candidates by mass detection and validate the remaining 24 candidates to >99% confidence. Thirteen planets were previously validated or confirmed by other studies, and 24 were previously identified as planet candidates. The planets are mostly smaller than Neptune (21/26 planets), as in the Kepler mission, and all have short periods (P < 50 days) due to the duration of the K2 photometry. The host stars are relatively bright (most have Kp < 12.5 mag) and are amenable to follow-up characterization. For K2-38, we measured precise radial velocities using Keck/HIRES and provide initial estimates of the planet masses. K2-38b is a short-period super-Earth with a radius of 1.55 +/- 0.16 R-circle plus, a mass of 12.0 +/- 2.9M(circle plus), and a high density consistent with an iron-rich composition. The outer planet K2-38c is a lower-density sub-Neptune-size planet with a radius of 2.42 +/- 0.29 R-circle plus and a mass of 9.9 +/- 4.6M(circle plus) that likely has a substantial envelope. This new planet sample demonstrates the capability of K2 to discover numerous planetary systems around bright stars.
24

K2 DISCOVERS A BUSY BEE: AN UNUSUAL TRANSITING NEPTUNE FOUND IN THE BEEHIVE CLUSTER

Obermeier, Christian, Henning, Thomas, Schlieder, Joshua E., Crossfield, Ian J. M., Petigura, Erik A., Howard, Andrew W., Sinukoff, Evan, Isaacson, Howard, Ciardi, David R., David, Trevor J., Hillenbrand, Lynne A., Beichman, Charles A., Howell, Steve B., Horch, Elliott, Everett, Mark, Hirsch, Lea, Teske, Johanna, Christiansen, Jessie L., Lépine, Sébastien, Aller, Kimberly M., Liu, Michael C., Saglia, Roberto P., Livingston, John, Kluge, Matthias 07 December 2016 (has links)
Open clusters have been the focus of several exoplanet surveys, but only a few planets have so far been discovered. The Kepler spacecraft revealed an abundance of small planets around small cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp = 15.5 mag) M3.0 +/- 0.5 dwarf from K2's Campaign 5 with an effective temperature of 3471 +/- 124 K, approximately solar metallicity and a radius of 0.402 +/- 0.050 R-circle dot. We detected a transiting planet with a radius of 3.47(-0.53)(+0.78)R(circle plus) and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging, and archival survey images to rule out any false-positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.
25

Detecting cosmological reionization on large scales through the 21 cm HI line

Chippendale, Aaron Paul January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis presents the development of new techniques for measuring the mean redshifted 21 cm line of neutral hydrogen during reionization. This is called the 21 cm cosmological reionization monopole. Successful observations could identify the nature of the first stars and test theories of galaxy and large-scale structure formation. The goal was to specify, construct and calibrate a portable radio telescope to measure the 21 cm monopole in the frequency range 114 MHz to 228 MHz, which corresponds to the redshift range 11.5 > z > 5.2. The chosen approach combined a frequency independent antenna with a digital correlation spectrometer to form a correlation radiometer. The system was calibrated against injected noise and against a modelled galactic foreground. Components were specified for calibration of the sky spectrum to 1 mK/MHz relative accuracy. Comparing simulated and measured spectra showed that bandpass calibration is limited to 11 K, that is 1% of the foreground emission, due to larger than expected frequency dependence of the antenna pattern. Overall calibration, including additive contributions from the system and the radio foreground, is limited to 60 K. This is 160 times larger than the maximum possible monopole amplitude at redshift eight. Future work will refine and extend the system known as the Cosmological Reionization Experiment Mark I (CoRE Mk I).
26

Doppler tomographic observations of exoplanetary transits

Johnson, Marshall Caleb 24 September 2013 (has links)
Transiting planet candidates around rapidly rotating stars, a number of which have been found by the Kepler mission, are not amenable to follow-up via the usual radial velocity techniques due to their rotationally broadened stellar lines. An alternative method is Doppler tomography. In this method, the distortions of the stellar spectral lines due to subtracted light during the transit are spectroscopically resolved. This allows us to not only validate the transiting planet candidate but also to obtain the spin-orbit misalignment for the system. The spin-orbit misalignment is a powerful statistical tracer of the migration histories of planets. I discuss our project to perform Doppler tomographic observations of Kepler candidates and other transiting planets using the facilities at McDonald Observatory. I present our first transit detection, that of Kepler-13 b, and discuss some other recent results. / text
27

Exploring the Chemical Evolution of Globular Clusters and their Stars : Observational Constraints on Atomic Diffusion and Cluster Pollution in NGC 6752 and M4

Gruyters, Pieter January 2014 (has links)
Through the cosmic matter cycle, the chemical evolution of the Milky Way is imprinted in the elemental abundance patterns of late-type stars (spectral types F to K). Due to their long lifetimes ( 1 Hubble time), these stars are of particular importance when it comes to studying the build-up of elements during the early times of our Galaxy. The chemical composition of the atmospheric layers of such stars is believed to resemble the gas from which they were formed. However, recent observations in globular clusters seem to contradict this assumption. The observations indicate that processes are at work that alter the surface compositions in these stars. The combined effect of processes responsible for an exchange of material between the stellar interior and atmosphere during the main sequence lifetime of the star, is referred to as atomic diffusion. Yet, the extent to which these processes alter surface abundances is still debated. By comparing abundances in unevolved and evolved stars all drawn from the same stellar population, any surface abundance anomalies can be traced. The anomalies, if found, can be compared to theoretical predictions from stellar structure models including atomic diffusion. Globular clusters provide stellar populations suitable to conduct such a comparison. In this thesis, the results of three independent analyses of two globular clusters, NGC 6752 and M4, at different metallicities are presented. The comparison between observations and models yields constraints on the models and finally a better understanding of the physical processes at work inside stars.
28

Solar Type Stars as Calibrators : A Photometric and Spectroscopic Study on the Atmospheric Properties of Late-type Stars

Önehag, Anna January 2011 (has links)
Detailed knowledge of solar-type stars is essential in the understanding of the evolutionary past, presence and future of the Sun as well as the formation of its planetary system. Moreover, solar-type stars are of key significance for the study of the evolution of the Galaxy. The ages of solar-type stars map the full galactic evolution. Their surface layers are well mixed and just little affected by the interior nuclear processes. They may therefore be used as samples of the gas from which the stars were once formed. Models of stellar atmospheres are used to derive fundamental stellar quantities such as chemical composition, effective temperature, surface gravity, age and rotation. It is therefore also important to investigate the progress and shortcomings of the atmospheric models and the reliability of calibrations based upon these. In this thesis we explore the potential of synthetic uvbyHβ colours for deriving atmospheric parameters. The theoretical colours are derived using high-resolution synthetic spectra based on 1D atmosphere models of late-type stars. Furthermore, possible applications of the established synthetic colours on globular stellar clusters are tested. Observations of solar-type stars have demonstrated the existence of stars very similar to the Sun, so-called solar twins. A detailed chemical analysis of these stars, however, shows that most solar-twins are systematically richer, as compared with the Sun, in refractory elements such as Fe, Ni and Al, relative to volatile elements like C, N and O. This chemical abundance pattern has been suggested to be related to the formation of planets or the birth environment of the respective star. In this thesis we present a high-accuracy study on a solar-twin star in the old open cluster M67. We find that the star is very similar to the Sun when comparing their atmospheric parameters, effective temperature, surface gravity and metallicity. Remarkably enough, unlike most solar twins observed in the solar vicinity, the cluster twin shows the same refractory to volatile pattern as the Sun.The reason for this similarity is still unknown but further observations of the cluster will help to clarify the matter. M dwarfs constitute a large fraction of the detectable baryonic matter. In spite of this, detailed knowledge on the numerous neighbouring low-mass stars is still not available. The presence of strong molecular features in the spectra, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for detailed spectroscopic abundance analysis. In this thesis we present a high resolution spectroscopic study of early-type M dwarfs in the infrared. The lack of prominent molecular bands in parts of the infrared J-band (1100--1400 nm) allows a precise continuum placement. Furthermore, we verify the adequacy of using the model atmospheres for abundance determination by observing a set of binary systems with a solar-type primary and an M dwarf companion. We present a reliable zero-point for the metallicity scale of early-type M dwarfs and verify the reliability of spectroscopic abundance analyses in the infrared.
29

Detecting cosmological reionization on large scales through the 21 cm HI line

Chippendale, Aaron Paul January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis presents the development of new techniques for measuring the mean redshifted 21 cm line of neutral hydrogen during reionization. This is called the 21 cm cosmological reionization monopole. Successful observations could identify the nature of the first stars and test theories of galaxy and large-scale structure formation. The goal was to specify, construct and calibrate a portable radio telescope to measure the 21 cm monopole in the frequency range 114 MHz to 228 MHz, which corresponds to the redshift range 11.5 > z > 5.2. The chosen approach combined a frequency independent antenna with a digital correlation spectrometer to form a correlation radiometer. The system was calibrated against injected noise and against a modelled galactic foreground. Components were specified for calibration of the sky spectrum to 1 mK/MHz relative accuracy. Comparing simulated and measured spectra showed that bandpass calibration is limited to 11 K, that is 1% of the foreground emission, due to larger than expected frequency dependence of the antenna pattern. Overall calibration, including additive contributions from the system and the radio foreground, is limited to 60 K. This is 160 times larger than the maximum possible monopole amplitude at redshift eight. Future work will refine and extend the system known as the Cosmological Reionization Experiment Mark I (CoRE Mk I).
30

An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

Lothringer, Joshua D., Benneke, Björn, Crossfield, Ian J. M., Henry, Gregory W., Morley, Caroline, Dragomir, Diana, Barman, Travis, Knutson, Heather, Kempton, Eliza, Fortney, Jonathan, McCullough, Peter, Howard, Andrew W. 17 January 2018 (has links)
GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 mu m. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 mu m. The spectrum is indicative of moderate to high metallicity (similar to 100-1000x solar), while moderate-metallicity scenarios (similar to 100x. solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 mu m in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.

Page generated in 0.0725 seconds