Spelling suggestions: "subject:"tempo dde défauts"" "subject:"tempo dee défauts""
1 |
Provisionnement en assurance non-vie pour des contrats à maturité longue et à prime unique : application à la réforme Solvabilité 2 / Provisioning in non life insurance for contracts with long maturities and unique premium : Application to Solvency 2 reformNichil, Geoffrey 19 December 2014 (has links)
Nous considérons le cas d’un assureur qui doit indemniser une banque à la suite de pertes liées à un défaut de remboursement de ses emprunteurs. Les modèles couramment utilisés sont collectifs et ne permettent pas de prendre en compte les comportements individuels des emprunteurs. Dans une première partie nous définissons un modèle pour étudier le montant des pertes liées à ces défauts de paiement (provision) pour une période donnée. La quantité clé de notre modèle est le montant d’un défaut. Pour un emprunteur j et une date de fin de prêt Tj , ce montant vaut max(Sj Tj -Rj Tj ; 0), où Sj Tj est le montant dû par l’emprunteur et dépend de la durée et du montant du prêt, et Rj Tj est le montant de la revente du bien immobilier financé par le prêt. Rj Tj est proportionnel au montant emprunté; le coefficient de proportionnalité est modélisé par un mouvement Brownien géométrique et représente les fluctuations des prix de l’immobilier. La loi des couples (Date de fin du prêt, Durée du prêt) est modélisée par un processus ponctuel de Poisson. La provision Ph, où h est la durée maximale des contrats considérés, est alors définie comme la somme d’un nombre aléatoire de montants de défauts individuels. Nous pouvons ainsi calculer l’espérance et la variance de la provision mais aussi donner un algorithme de simulation. Il est également possible d’estimer les paramètres liés au modèle et de fournir une valeur numérique aux quantiles de la provision. Dans une deuxième partie nous nous intéresserons au besoin de solvabilité associé au risque de provisionnement (problématique imposée par la réforme européenne Solvabilité 2). La question se ramène à étudier le comportement asymptotique de Ph lorsque h ! +1. Nous montrons que Ph, convenablement normalisée, converge en loi vers une variable aléatoire qui est la somme de deux variables dont l’une est gaussienne / We consider an insurance company which has to indemnify a bank against losses related to a borrower defaulting on payments. Models normally used by insurers are collectives and do not allows to take into account the personal characteristics of borrowers. In a first part, we defined a model to evaluate potential future default amounts (provision) over a fixed period.The amount of default is the key to our model. For a borrower j and an associated maturity Tj, this amount is max(Sj Tj -Rj Tj ; 0), where Sj Tj is the outstanding amount owed by the borrower and depends on the borrowed amount and the term of the loan, and Rj Tj is the property sale amount. Rj Tj is proportionate to the borrowed amount; the proportionality coefficient is modeled by a geometric Brownian motion and represents the fluctuation price of real estate. The couples (Maturity of the loan, Term of the loan) are modeled by a Poisson point process. The provision Ph, where h is the maximum duration of the loans, is defined as the sum of the random number of individual defaults amounts. We can calculate the mean and the variance of the provision and also give an algorithm to simulate the provision. It is also possible to estimate the parameters of our model and then give a numerical value of the provision quantile. In the second part we will focus on the solvency need due to provisioning risk (topic imposed by the european Solvency 2 reform). The question will be to study the asymptotic behaviour of Ph when h ! +1. We will show that Ph, well renormalized, converges in law to a random variable which is the sum of two random variables whose one is a Gaussian
|
2 |
Quelques applications du contrôle stochastique aux risques de défaut et de liquiditéLim, T. 07 July 2010 (has links) (PDF)
Cette thèse se compose de trois parties indépendantes portant sur l'application du contrôle stochastique à la finance. Dans la première partie, nous étudions le problème de maximisation de la fonction d'utilité dans un marché incomplet avec défauts et information totale/partielle. Nous utilisons le principe de la programmation dynamique pour pouvoir caractériser la fonction valeur solution du problème. Ensuite, nous utilisons cette caractérisation pour en déduire une EDSR dont la fonction valeur est solution. Nous donnons également une approximation de cette fonction valeur. Dans la seconde partie, nous étudions les EDSR à sauts. En utilisant les résultats de décomposition des processus à sauts liée au grossissement progressif de filtration, nous faisons un lien entre les EDSR à sauts et les EDSR browniennes. Cela nous permet de donner un résultat d'existence, un théorème de comparaison ainsi qu'une décomposition de la formule de Feynman-Kac. Puis nous utilisons ces techniques pour la détermination du prix d'une option européenne dans un marché complet et le prix d'indifférence d'un actif contingent non duplicable dans un marché incomplet. Enfin, dans la troisième partie, nous utilisons la théorie des erreurs pour expliquer le risque de liquidité comme une propriété intrinsèque au marché. Cela nous permet de modéliser la fourchette Bid-Ask. Puis nous résolvons dans ce modèle le problème de liquidation optimale d'un portefeuille en temps discret et déterministe en utilisant la programmation dynamique.
|
3 |
Information on a default time : Brownian bridges on a stochastic intervals and enlargement of filtrations / Information sur le temps de défaut : ponts browniens sur des intervalles stochastiques et grossissement de filtrationsBedini, Matteo 12 October 2012 (has links)
Dans ce travail de thèse le processus d'information concernant un instant de défaut τ dans un modèle de risque de crédit est décrit par un pont brownien sur l'intervalle stochastique [0, τ]. Un tel processus de pont est caractérisé comme plus adapté dans la modélisation que le modèle classique considérant l'indicatrice I[0,τ]. Après l'étude des formules de Bayes associées, cette approche de modélisation de l'information concernant le temps de défaut est reliée avec d'autres informations sur le marché financier. Ceci est fait à l'aide de la théorie du grossissement de filtration, où la filtration générée par le processus d'information est élargie par la filtration de référence décrivant d'autres informations n'étant pas directement liées avec le défaut. Une attention particulière est consacrée à la classification du temps de défaut par rapport à la filtration minimale mais également à la filtration élargie. Des conditions suffisantes, sous lesquelles τ est totalement inaccessible, sont discutées, mais également un exemple est donné dans lequel τ évite les temps d'arrêt, est totalement inaccessible par rapport à la filtration minimale et prévisible par rapport à la filtration élargie. Enfin, des contrats financiers comme, par exemple, des obligations privée et des crédits default swaps, sont étudiés dans le contexte décrit ci-dessus. / In this PhD thesis the information process concerning a default time τ in a credit risk model is described by a Brownian bridge over the random time interval [0, τ]. Such a bridge process is characterised as to be a more adapted model than the classical one considering the indicator function I[0,τ]. After the study of related Bayes formulas, this approach of modelling information concerning the default time is related with other financial information. This is done with the help of the theory of enlargement of filtration, where the filtration generated by the information process is enlarged with a reference filtration modelling other information not directly associated with the default. A particular attention is paid to the classification of the default time with respect to the minimal filtration but also with respect to the enlarged filtration. Sufficient conditions under which τ is totally inaccessible are discussed, but also an example is given of a τ avoiding the stopping times of the reference filtration, which is totally inaccessible with respect to its own filtration and predictable with respect to the enlarged filtration. Finally, common financial contracts like defaultable bonds and credit default swaps are considered in the above described settings.
|
Page generated in 0.0641 seconds