• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 107
  • 22
  • 15
  • 11
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 426
  • 426
  • 169
  • 167
  • 84
  • 75
  • 64
  • 59
  • 52
  • 48
  • 48
  • 46
  • 46
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Diagnostické metody použitelné pro monitorování sušícího procesu cihlářských výrobků / Diagnostic Methods Suitable for Monitoring of Drying Process of Brick Product

Sarvaš, Ondřej January 2019 (has links)
This work deals with the study of diagnostic methods suitable for monitoring of the drying process of brick raw materials. Based on the extensive literature search, several parameters are selected, which are appropriate to monitoring during drying. In addition, a methodology for measuring these selected parameters is proposed. In the experimental part, the use of all described methods is gradually verified on the brick raw material with and without shortening additive (also known as grog). Was carried out: measurement of the surface temperature in the climatic chamber, determination of humidity distribution in the sample, determination of moisture diffusivity, determination of tensile strength, determination of ultrasonic wave velocity and determination of dynamic E-modulus of elasticity. Results of experiments and the gained experiences show, that at least two of the above-mentioned monitoring methods are very appropriate and beneficial – determination of moisture diffusivity and determination of tensile strength. In the work was described in detail the procedure of determination of moisture diffusivity of material. The dependence of moisture diffusivity on the moisture content of the dried material, has been described. Also, differences between raw material with grog and without grog has been described. As part of the practical verification of the experiment designed to determine the tensile strength at different humidity levels of test samples. A new shape of the test specimens and a new device were designed to allow them to be attached to a hydraulic press. The results of this work show that the tensile strength of the ceramic green bodies is primarily dependent on the moisture content of the material. The type of raw material almost does not affect the tensile strength.
382

Příměsi ovlivňující tuhnutí portlandského cementu / The admixtures which are influencing setting time of portland cement

Hlaváček, Jaroslav January 2012 (has links)
During the production of concrete is important the careful selection of raw materials. Nowadays, we are trying in the production to minimize the economic burden and to maximize the use of secondary raw materials. This work is focused on the use of secondary raw materials from the energy industry in construction for the preparation of hydraulic binders. As the main raw materials were used different power plant fly ash from fluidized combustion. The composition of these secondary materials is quite different from conventional high-temperature ash, due to mixing with water they solidify and harden. Experiments were performed with three lodge fly ash from electrostatic precipitators of the fluidized combustion and one high-temperature fly ash. This work is focused on the possibility of monitoring the use of these secondary materials in construction, especially when tests were evaluated characteristics of strength and speed of setting and hardening.
383

Influence of the Melt Flow Rate on the Mechanical Properties of Polyoxymethylene (POM)

Faust, Karsten, Bergmann, André, Sumpf, Jens January 2017 (has links)
In this article the correlation between the average molar mass and the melt flow rate (MFR) is achieved. Based on the example of Polyoxymethylene (POM) it is shown that a high average molar mass is associated with a low MFR (high viscosity). On the basis of this dependency, the mechanical properties of static and dynamic tensile strength, elastic modulus, hardness and notched impact strength are investigated. It was found that the characteristic values of static tensile strength, elastic modulus and hard-ness increase with increasing MFR (decreasing viscosity). On the other hand the dynamic long-term properties and notched impact strengths decrease with increasing MFR. / Im Beitrag wird der Zusammenhang zwischen der mittleren molaren Masse und des Schmelzfließindex (MFR) hergestellt. Dabei wird am Beispiel von Polyoxymethylen (POM) ersichtlich, dass eine hohe mittlere molare Masse mit einem geringen MFR (hochviskos) einhergeht. Basierend auf dieser Abhängigkeit werden die mechanischen Eigenschaften statische und dynamische Zugfestigkeit, E-Modul, Härte sowie Kerbschlagzähigkeit untersucht. Dabei konnte festgestellt werden, dass die Kenngrößen statische Zugfestigkeit, E-Modul und Härte mit steigendem MFR (abnehmende Viskosität) zunehmen. Die dynamischen Langzeiteigenschaften und Kerbschlagzähigkeiten sinken hingegen mit zunehmendem MFR.
384

Brazilian test on anisotropic rocks: laboratory experiment, numerical simulation and interpretation

Dinh, Quoc Dan 09 February 2011 (has links)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab. A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc. There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223 / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht. Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen. Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223
385

Improvement of Serviceability and Strength of Textile Reinforced Concrete by using Short Fibres

Hinzen, Marcus, Brameshuber, Wolfgang 03 June 2009 (has links)
Nowadays, thin-walled load bearing structures can be realised using textile reinforced concrete (BRAMESHUBER and RILEM TC 201-TRC [1]). The required tensile strength is achieved by embedding several layers of textile. By means of the laminating technique the number of textile layers that can be included into the concrete could be increased. To further increase the first crack stress and the ductility as well as to optimize the crack development, fine grained concrete mixes with short fibres can be used. By a schematic stress-strain curve the demands on short fibres are defined. Within the scope of this study, short fibres made of glass, carbon, aramid and polyvinyl alcohol are investigated in terms of their ability to fit these requirements. On the basis of these results, the development of hybrid fibre mixes to achieve the best mechanical properties is described. Additionally, a conventional FRC with one fibre type is introduced. Finally, the fresh and hardened concrete properties as well as the influence of short fibres on the load bearing behaviour of textile reinforced concrete are discussed.
386

Nanocomposites à matrice élastomère à base de charges lamellaires synthétiques alpha-ZrP : influence de la modification des charges sur les propriétés mécaniques et barrière aux gaz / Synthetic lamellar nanofillers alpha-ZrP based elastomeric nanocomposites : influence of the fillers modification on the mechanical and gas barrier properties

Dal Pont, Kévin 06 June 2011 (has links)
Ce travail concerne l'étude des modifications de nanocharges lamellaires synthétiques (α-ZrP) et de leur influence sur les propriétés mécaniques et barrière aux gaz de nanocomposites à matrice élastomère (SBR). Cette étude s'inscrit dans le cadre de l'amélioration de l'étanchéité des pneumatiques. L'une des originalités de ce travail a résidé dans l'introduction des nanocharges hydrophiles par le biais d'une dispersion aqueuse (slurry), dans la matrice SBR hydrophobe. La première phase de ce travail a consisté à entreprendre plusieurs types de modification des nanocharges afin d'étudier les mécanismes d'intercalation et/ou d'exfoliation des ces dernières dans le slurry. Ces différentes familles de charges modifiées ont été utilisées pour réaliser des nanocomposites selon différentes voies de mise en oeuvre : principalement solvant et latex. Nous avons ensuite étudié l'influence, (i) de la nature des intercalants, (ii) des distances interfoliaires initiales des nanocharges et (iii) des procédés de mise en oeuvre des nanocomposites, sur la morphologie et les propriétés finales des matériaux. Cette étude a montré la synergie de ces trois paramètres et mis en évidence l'importance du contrôle des interactions charges modifiées/matrice sur les propriétés de transport de gaz. Parmi l'ensemble des matériaux synthétisés, nous avons pu mettre en avant une formulation, permettant d'atteindre des propriétés mécaniques et barrière intéressantes. Cette formulation, en voie latex, est basée sur l'utilisation de la charge modifiée aminosilane et de l'agent de couplage Si69 / This work concerns the study of the modification of synthetic lamellar nanofillers (α-ZrP) and their influence on mechanical and gas barrier properties of elastomeric nanocomposites (SBR). This study is part of improving the tire tightness. One of the originalities of this work is the introduction of hydrophilic nanofillers through an aqueous dispersion (slurry) in the hydrophobic SBR matrix. The first step of this work was to undertake several types of nanofiller modifications state in order to study their intercalation/exfoliation mechanisms in a slurry. These different families of modified fillers were then used to make nanocomposites with different ways of implementations: mainly solvent and latex ones. The influence of, (i) the nature of the intercalating agent, (ii) the initial nanofiller interlayer distance and (iii) the nanocomposite implementation processes, on the morphology and final properties of materials were studied. The synergy of these three parameters was demonstrated and the importance of controlling the modified filler/matrix interactions on the gas transport and mechanical properties was also proved. Among all the synthesized materials, a formulation was put forward which allowed to achieve interesting mechanical and barrier properties. This formulation, processed by the latex route, is based on the use of aminosilane modified nanofillers and the Si69 coupling agent
387

Využití alternativních pojiv do stmelených směsí z recyklátů / Use of alternative binders in bound mixtures from waste building materials

Jakub, Tomáš January 2022 (has links)
This diploma thesis is focused to use bonded base layers with different types of admixures for base layers of roads. The first, theoretical part of the work deals with summary of the available literature. Deals with basic and uncoventional type of admixures used for bonded base layers. The second, partical part of the work deals with comparsion of 5 bonded base layers with recycled asphalt with added artifical fibers, cellulose fibers or without admixures and one mixtures created only from First of all is described tesťs methods with design of mixtures and described materials. In the practical part of the work was tested compressive strength, transverse tensile strength and compressive strength after effects of frost. In the end of the work is comparsion all mixtures between themselves and determination effects admixtures on compressive strength and transverse tensile strength.
388

Geopolymery na bázi elektrárenských popílků a cihelného střepu / Geopolymers based on fly ashes and brick body

Řezník, Bohuslav January 2014 (has links)
In line with the current focus on utilizing side products of various production processes, this dissertation thesis analyzes the process of alkali activation of particular side products: fly ash and brick fragments. This activation produces geopolymeric materials widely used in civil engineering. The thesis aims to optimize the geopolymerization process so that the resulting geopolymer is both ecologically and economically viable. To that end, the thesis studies the course of geopolymeric reaction between the alkali activator and fly ash from: (i) the Chvaletice power plant, (ii) the Dětmarovice power plant, and (iii) biomass combustion, as well as (iv) fluid fly ash from the Hodonín power plant. All experiments of geopolymeric reaction have focused on the factors influencing the synthesis of geopolymers—that is: composition of the alkali activator, the ratio of alumino-silicate to the activator, and the impact of temperature on structure of the synthesized geopolymer. Further, the thesis analyzed the synthesized polymer’s microstructure, phase composition, resistance against corrosive conditions, and compressive strength, as well as mechanical-fracture properties of selected fly-ash geopolymers. The thesis finds that the most suitable for geopolymeric synthesis appears to be the fly ash from the Chvaletice power plant in which case the obtained geopolymers showed best properties in the studied areas. The fly ash from the Dětmarovice power plant, biomass fly ash, and fluid fly ash have failed to reach acceptable properties. Separately, the thesis studies the geopolymerization of brick body that could be suitable input for alkali activation. The geopolymers synthesized from brick fragments resulted in materials of supperior mechanical strength. A mixed use of fly ash and brick fragments failed to show a synergetic effect. Properties of the resulting geopolymers have been inferior to the properties of geopolymers produced using just fly ash or just brick body.
389

Long Term Performance of Corrugated HDPE Pipes Produced with Post-Consumer Recycled Materials Under Constant Deflection

Shaheen, Ehab T. January 2018 (has links)
No description available.
390

Effect of surface conditioning methods on repair bond strength of microhybrid resin matrix composite

Rajitrangson, Phitakphong, 1982- January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Repair is an alternative treatment option in many cases to replacement of resin matrix composite restoration. However, aged resin matrix composites have a limited number of carbon-carbon double bonds to adhere to a new layer of rein. Therefore, surface treatments of the aged resin matrix composite surface prior to repairing could improve the repair bond strength. The objectives of this study were to: 1) To evaluate various surface treatments on shear bond strength of repair between aged and new microhybrid resin matrix composite, and 2) To assess the influence of applying a silane coupling agent after surface treatments. Eighty disk-shaped resin matrix composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatments (n = 20): 1) Airborne abrasion with 50 μm aluminum oxide, 2) Tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG laser and control group (n = 20). Specimens were cleaned with 35-percent phosphoric acid, rinsed, and dried. Each group was assigned into two subgroups (n =10): a) no silanization, and b) with silanization. Adhesive agent was applied and new resin matrix composite was bonded to each conditioned surface. Bond strength was evaluated by shear test. Data were analyzed with a two-way ANOVA model. The interaction between conditioning and silanization was significant(p = 0.0163), indicating that comparisons of silanization must be evaluated for each conditioning method, and that comparisons of conditioning methods must be evaluated separately with and without silanization. Airborne particle abrasion showed significantly higher repair bond strength than Er,Cr:YSGG laser without silanization (p < 0.0001) and with silanization(p = 0.0002), and higher repair bond strength than the control without silanization (p < 0.00001) and with silanization (p < 0.00001). Airborne particle abrasion did not have significantly different in repair bond strength than Tribosilica coating without silanization (p = 0.70) or with silanization (p = 0.33). Tribosilica coating had significantly higher repair bond strength than Er,CR:YSGG laser without silanization (p < 0.0001) and with silanization (p < 0.0001), and significantly higher repair bond strength than control without silanization (p < 0.0001), but not with silanization (p =0.16). Er,CR:YSGG laser and control did not have significantly different repair bond strength without silanization (p = 1.00) or with silanization (p = 0.11). There was no effect of silanization on repair bond strength overall (p = 0.34) for any of the surface conditioning methods (p = 0.76 for airborne particle abrasion; p = 0.39 for tribosilica coating; p = 1.00 for Er,Cr:YSGG laser, or p = 0.39 for control). Airborne particle abrasion with 50-μm aluminum oxide particle and tribochemical silica coating followed by the application of bonding agent provided the highest shear bond strength values, suggesting that they might be adequate methods to improve the quality of the repairs of resin-matrix composites.

Page generated in 0.0838 seconds