• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 90
  • 1
  • 1
  • Tagged with
  • 278
  • 218
  • 97
  • 93
  • 69
  • 64
  • 54
  • 46
  • 45
  • 33
  • 31
  • 27
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Aspects of Yang-Mills Theory : Solitons, Dualities and Spin Chains

Freyhult, Lisa January 2004 (has links)
<p>One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties.</p><p>Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theory in AdS<sub>5</sub>×S<sup>5</sup> is dual to four dimensional Yang-Mills with four supersymmetries. The duality relate the non perturbative regime of one of the theories to the perturbative regime of the other. This makes it in general hard to test this conjecture. For a special type of solutions it is however possible to use a perturbative expansion in both theories. We discuss this type of solutions and in particular we discuss a method, the Bethe ansatz, to find the solutions on the gauge theory side.</p>
202

Spin-offs from Stretching a Point : Strings, Branes and Higher Spin

Rajan, Peter January 2004 (has links)
<p>String theory has proved to be a valuable theoretical laboratory for probing gravity and gauge theory in a unified framework. In this thesis some of the exciting spin-offs of string theory such as branes and higher spin are studied. After a review of the basics of string theory the four papers of the thesis are discussed. In the first paper we support the equivalence between two descriptions of non-commutative open strings by calculating scattering amplitudes in both approaches. The second paper gives a physical interpretation of the fact that Ramond-Ramond charge in string theory on SU(2) is only defined modulo an integer. In the third paper we calculate contributions to the stress-energy tensor of higher-spin theory in four dimensional AdS space, and in the last paper of the thesis we compare the free energy of the two dimesional type 0A extremal blackhole and find agreement with the corresponding quantity in a deformed matrix model.</p>
203

Field Theories and Vortices with Nontrivial Geometry

Torokoff, Kristel January 2006 (has links)
<p>This thesis investigates aspects of field theories and soliton solutions with nontrivial topology. In particular we explore the following effective models: a limited sector of the scalar Electroweak theory called extended Abelian Higgs model, and a classical mechanics model derived from the low energy SU(2) Yang-Mills theory.</p><p>The extended Abelian Higgs model applied on two-component plasma of charged particles is studied numerically. We find evidence that the model admits straight twisted line vortices. The result is described by an energy function that acquires a minimum value for a non-trivial twist. In addition to the twisted line vortices the result also suggests that stable torus shaped solitons are solutions of the theory. </p><p>Furthermore we construct a classical mechanics model exhibiting some of the key properties of the low-energy Yang-Mills theory. The dynamics of the model is studied numerically. We find that its classical equations of motion support stable periodic orbits. In a three dimensional projection these trajectories are self-linked in a topologically non-trivial manner suggesting the existence of knotted configurations in low energy SU(2) Yang-Mills theory. </p><p>We calculate the one-loop effective action for the Abelian Higgs model with extended Higgs sector. The resulting first order quantum corrected model shows close resemblance to a modified model where texture stabilizing term has been added to the system. In the limit where the gauge field can be entirely expressed by the scalar fields, the both models become identical suggesting that the theories are closely connected. This implies that quantum corrections have stabilising effect on the soliton solutions. </p><p>These studies have contributed to a better understanding of the dynamics of non-linear low energy systems, and brought us a step closer to exploring full scale physically realistic models.</p>
204

Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space Geometry

Bredthauer, Andreas January 2006 (has links)
<p>In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models.</p><p>The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence.</p><p>For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.</p>
205

Strings as Sigma Models and in the Tensionless Limit

Persson, Jonas January 2007 (has links)
<p>This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.</p>
206

The Signified World : The Problem of Occasionality in Husserl's Phenomenology of Meaning

Weigelt, Karl January 2008 (has links)
This study offers the first comprehensive account of the problem of situation-dependence and facticity in Husserl's phenomenology of meaning. On the basis of a reconsideration of the central ideas of Husserl's phenomenological approach to meaning and intentionality, it presents a reconstruction and assessment of Husserl's revised conception of empirical meaning. Taking its lead from Husserl's self-critical remark on the analysis of "occasional expressions" in the Logical Investigations, the study uncovers the underlying problem with Husserl's initial conception of the relation between subjectivity and objectivity. It is shown that the problem of occasionality does not relate to indexicality in a standard sense, but to the essential facticity and subject-relativity of the intentional individuation of real being in general and to the contingency and inexhaustible transcendence of the world. The reconstruction of Husserl's solution is carefully related to an interpretation of central ideas of Husserl's developed philosophy. Critically reviewing influential interpretations of Husserl, the study elaborates on the question of internalism and externalism, the question of representationalism, the question of ideal contents, the notion of noema and the issues of direct reference and de re meaning. It is shown how Husserl's revised conception of empirical meaning is related to the analysis of horizon-intentionality, to the constitution of the transcendent real world and to the constitution of the lived body as a centre of situated orientation. It is argued that Husserl succeeds in maintaining phenomenological internalism with regard to intentionality in concreto, while accepting a form of externalism with regard to meaning, according to which the possibility of true identity of meaning is bound to the presumptive existence of the experienced world.
207

On Causal Attribution

Lindahl, B. Ingemar B. January 2009 (has links)
This dissertation treats of the problem of attributing the occurrence of an individual event or state to a single cause — a problem commonly understood either as a question of distinguishing the cause from the mere conditions or as a matter of singling out, from several causes, one cause, as the cause. The main purpose of the study is to clarify some basic concepts, and some criteria of ascertainment of the cause, that may be discerned in the literature on causal attribution. Special attention is devoted to how the adequacy of causal attributions depends on pragmatic factors. The study begins with an analysis of J. S. Mill’s distinction in A System of Logic between a scientific and a common-parlance approach to the problem of causal attribution. Mill’s assumption that causal attribution in science always requires a universal-law subsumption is then examined in the context of a general discussion of the range of applicability of the covering-law model of explanation. Mill’s scientific and common-parlance notions of cause are compared with R. G. Collingwood’s historical (sense-I) and scientific (sense-II and -III) notions of cause. It is argued that there are purposes of inquiry for which Mill’s common-parlance approach is more relevant to causal attribution in natural science than his scientific approach. And, more generally, it is argued that although law subsumptions are necessary for the ascertainment of the causes, more is often required for explaining the effect. Samuel Gorovitz’s differentiating-factor analysis is discussed, and limitations of the model are identified. The relevance of Morton White’s abnormalistic approach to historical research is also examined. Further, a number of objectivistic approaches are discussed, and it is argued that objectivity is not attainable in causal attributions in a sense in which it always implies an improvement of our ability to attribute the occurrence of an individual event or state to a single cause.
208

Torn, Spun and Chopped : Various Limits of String Theory

Kristiansson, Fredric January 2003 (has links)
For the first time in the history of physics we stand in front of a theory that might actually serve as a unification of it all - string theory. It provides a self-consistent framework for gravity and quantum mechanics, which naturally incorporates matter and gauge interactions of the type seen in the standard model. Unfortunately, at the moment we do not know of any principle that selects the vacuum of the theory, so predictions about our four-dimensional world are still absent. However, the introduction of extended objects opens up an intricate new arena of physics, which is non-trivial and challenging to map out, even at a basic level. A key concept of quantum gravity is holography; this is realised in string theory by the AdS/CFT correspondence, which relates string theory to a field theory living in a lower dimensional space. In this thesis we discuss two limits of the correspondence, namely the BMN limit, giving rise to a plane wave geometry, and the tensionless limit, exhibiting massless higher spin interactions. We also study a limit of string theory in a background electric field, where the theory is described by open strings and positively wound closed strings only. We begin with a brief review of the theory, focusing on an intuitive understanding of the basic aspects and serving as an introduction to the papers. In the first paper we calculate, from two different points of view, scattering amplitudes in the non-commutative open string limit. In the second paper we obtain the quadratic scalar field contributions to the stress-energy tensor in the minimal bosonic higher spin gauge theory in four dimensions. In the last paper we propose a way to avoid fermion doubling when discretizing the string in the BMN limit.
209

Aspects of Yang-Mills Theory : Solitons, Dualities and Spin Chains

Freyhult, Lisa January 2004 (has links)
One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties. Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theory in AdS5×S5 is dual to four dimensional Yang-Mills with four supersymmetries. The duality relate the non perturbative regime of one of the theories to the perturbative regime of the other. This makes it in general hard to test this conjecture. For a special type of solutions it is however possible to use a perturbative expansion in both theories. We discuss this type of solutions and in particular we discuss a method, the Bethe ansatz, to find the solutions on the gauge theory side.
210

Spin-offs from Stretching a Point : Strings, Branes and Higher Spin

Rajan, Peter January 2004 (has links)
String theory has proved to be a valuable theoretical laboratory for probing gravity and gauge theory in a unified framework. In this thesis some of the exciting spin-offs of string theory such as branes and higher spin are studied. After a review of the basics of string theory the four papers of the thesis are discussed. In the first paper we support the equivalence between two descriptions of non-commutative open strings by calculating scattering amplitudes in both approaches. The second paper gives a physical interpretation of the fact that Ramond-Ramond charge in string theory on SU(2) is only defined modulo an integer. In the third paper we calculate contributions to the stress-energy tensor of higher-spin theory in four dimensional AdS space, and in the last paper of the thesis we compare the free energy of the two dimesional type 0A extremal blackhole and find agreement with the corresponding quantity in a deformed matrix model.

Page generated in 0.084 seconds