41 |
Investigation into the Mechanism(s) which Permit the High-Rate, Degradation of PAHS and Related Petroleum Hydrocarbons in Sequencing Batch Reactors by Attached Cells in a Controlled Mixed Bacterial Community.Hussein, Emad Ibraheim 04 December 2006 (has links)
A stable mixed culture, deposited as ATCC 55644, previously shown to degrade petroleum hydrocarbons at relatively high concentrations was used as the source of inoculum. This culture was grown in Stanier’s minimal media, either in the presence of different concentrations of naphthalene, nitrobenzene and toluene (NNT) or naphthalene and toluene (NT) as the sole source of C and/or N. Results showed that the majority of the strains isolated from the mixed culture were able to grow in the presence of NNT or NT. A total of 20 different isolates were isolated from the mixed culture. Individual isolates were grown in Stanier’s minimal medium containing a single hydrocarbon as the source of carbon or carbon and nitrogen. Only one strain was found to grow solely in the presence of nitrobenzene as the source of C and N. Most of the other isolates were able to grow in the presence of naphthalene, toluene, acenaphthene, anthracene, fluoranthene and phenanthrene, n-dodecane, hexadecane, n-pentadecane, n-tetradecane, and n-octadecane. Planktonic and immobilized cells of the controlled mixed culture (ATCC 55644) were grown in separate Sequential Batch Reactors (SBR) using Stanier's media, to which naphthalene, nitrobenzene and toluene were added as the sole source of C and/or N. Biodegradation was determined by measuring the residual hydrocarbon in the SBR and the amount of trapped volatile organic carbon (VOC) and the evolved CO2. Gas chromatography data showed that immobilized cells were able to degrade NNT faster than the planktonic cells. This observation was confirmed by CO2 evolution. Over time the loading of hydrocarbon was significantly increased from a starting level of 400 ppm (Naphthalene), 100 ppm (Nitrobenzene), and 500 ppm (toluene), to a final level of 3000 ppm (Naphthalene), 400 ppm (Nitrobenzene), and 1600 ppm (toluene). While increasing nutrient loading, the frequency of re-feeding with hydrocarbons was changed from an initial re-feeding every 60 hrs to a final re-feeding frequency of 18 hrs. The experiments clearly showed that the attached, mixed microbial community was able to effectively and rapidly degrade high concentrations of hydrocarbons. This demonstrated the practical advantages of employing attached, mixed microbial cultures in a SBR.
|
42 |
Synthesis, optical and morphological characterization of pbse quantum dots for diagnostic studies: a model studyOuma, Linda Achiengꞌ January 2013 (has links)
>Magister Scientiae - MSc / In this study PbSe quantum dots (QDs) were successfully synthesized via the organometallic and aqueous routes. Optical characterization was carried out using photoluminescence (PL) spectroscopy, structural and morphological characterization were carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Energy-dispersive X-ray spectroscopy (EDS) was used to determine the composition of the QDs. All the synthesized QDs were found to have emissions within the near-infrared region of the spectrum (≥1000 nm) with most of them being less than 5 nm in size. The aqueous synthesized QDs had a perfect Gaussian emission spectrum with a FWHM of ~23 nm indicating pure band gap emission and narrow size distribution respectively. The QDs were determined to have a cubic rock-salt crystal structure consistent with bulk PbSe. The aqueous synthesized QDs were however not stable in solution with the QDs precipitating after approximately 48 h. The organometallic synthesized QDs were transferred into the aqueous phase by exchanging the surface oleic acid ligands with 11-mercaptoundecanoic acid ligands. The ligand exchanged QDs were however stable in solution for over two weeks. The effects of reaction parameters on the optical and structural properties of the organometallic synthesized QDs were investigated by varying the reaction time, temperature, ligand purity, lead and selenium sources. It was observed that larger QDs were formed with longer reaction times, with reactions proceeding faster at higher reaction temperatures than at lower temperatures. Varying the ligand purity was found to have minimal effects on the properties of the synthesized QDs. The lead and selenium sources contributed largely to the properties of the QDs with lead oxide producing spherical QDs which were smaller compared to the cubic QDs produced from lead acetate. TBPSe was seen to produce smaller QDs as compared to TOPSe. The cytotoxity of the synthesized QDs was determined following the WST-1 cell viability assay with the QDs being found to be non-toxic at all the tested concentrations
|
43 |
Compréhension et caractérisation des mécanismes physiologiques impliqués dans l'activité réductrice de Lactococcus Lactis / Understanding and characterization of physiological mechanisms involved in Lactococcus Lactis reducing activitiesMichelon, Damien 15 June 2010 (has links)
Parmi les bactéries lactiques, Lactococcus lactis est la plus utilisée en fabrication fromagère. Actuellement, les ferments lactiques sont majoritairement choisis pour leurs propriétés acidifiantes, protéolytiques et aromatiques. Un autre paramètre majeur est le potentiel redox (Eh). En effet, un Eh réducteur est souvent associé à une bonne qualité aromatique. L’activité réductrice de L. lactis pourrait donc être un nouveau paramètre à prendre en compte dans la maitrise du Eh dans la fabrication des produits laitiers fermentés. Néanmoins, les mécanismes impliqués dans l’activité réductrice de L. lactis demeurent encore inconnus. L’objectif de ce présent travail de thèse a été de les découvrir. Tout d’abord, nous avons développé des milieux de culture gélosé de discrimination redox utilisant des sels de tétrazolium pour cribler une banque de mutants aléatoires de L. lactis. Ceci a permis de démontrer la participation partielle de la chaine de transport d’électrons (Ménaquinones) dans l’activité réductrice de L. lactis. Ensuite, l’approche biochimique nous a permis de déterminer les composés biochimiques principaux contribuant à la diminution du Eh vers des valeurs très réductrices. La présence de groupements thiols exofaciaux est responsable du Eh réducteur atteint par L. lactis. Enfin, l’analyse protéomique utilisant un marquage spécifique des protéines thiols de surface a mis en évidence la présence d’une dizaine de protéines exposant des groupements thiols exofaciaux potentiellement impliquées dans l’activité réductrice de L. lactis. Les thiols sont connus pour être de très puissants antioxydants ce qui confère à L. lactis un intérêt supplémentaire à prendre en considération dans l’élaboration des produits laitiers fermentés. / Among the Lactic Acid Bacteria, Lactococcus lactis is the most used in cheese making. Nowadays, starters are used mainly for their acidifying, proteolytic and flavor properties. Another important parameter is the redox potential (Eh). Indeed, reducing Eh is often related to good flavor properties. The reducing activity of L.lactis should be therefore a new parameter to take into account in the monitoring of Eh during dairy fermented products making. Nevertheless, the mechanisms involved in the reducing activity of L.lactis are still unknown. The aim of this work was to understand them. First of all, we have developed tetrazolium salts agar plate media in order to screen a random bank of mutants of L. lactis on their redox capacities. These media allowed us to demonstrate the partial implication of the electron transport chain (Menaquinone) in the reducing activities of L. lactis. Secondly, we have determined the biochemical compounds involved in the decrease of Eh to very reducing values thanks to a biochemical approach. Exofacial thiol groups are mainly responsible for the reducing Eh reached by L.lactis. Lastly, a proteomical analysis using a specific staining of thiols surface proteins revealed the presence of about ten proteins displaying thiols exofacials groups. These proteins might be involved in the reducing activity of L.lactis. Thiols are known to be very strong antioxidants which confer to L. lactis an additional interest to consider in dairy products making.
|
44 |
Prediction of field emergence of maize (Zea mays L.) hybrids exposed to cold and wet conditionsMaree, Pieter Hermanus 12 August 2009 (has links)
The cold test is one of the oldest and most acceptable vigour tests as it is used to simulate stress conditions commonly occurring in the field. In recent years, some of South Africa’s top maize hybrids, with high cold test scores, have shown emergence problems under cold, wet planting conditions. It resulted in major complaints from commercial maize producers with sizable claims involved. Therefore, the need arose to find a more sensitive vigour test that takes into account cold, wet conditions. In practice, South African maize producers would not plant if it is too cold and wet. However, cold, wet conditions are commonly experienced during planting time in the main maize production regions of South Africa, especially during October and even November. Furthermore, in most of the commercial maize production areas, such as the western Free State, chances of thunder and hailstorms are high during the planting period. These weather conditions are major causes for sudden drops in temperature and flooding which can expose maize seed and emerging maize seedlings to stress conditions The effects of cold, wet conditions on germination and emergence of nine maize hybrids were investigated in laboratory, glasshouse and field experiments. Growth chamber and glasshouse experiments were conducted under 10°C, 20°C and 30°C and 0, 24, 48 and 72 hours flooding. Field experiments were conducted under different climatic conditions, resulting in cool and wet, cold and wet and favourable conditions during planting. The objectives were to investigate the correlations between different laboratory vigour tests and field emergence of maize hybrids under cold, wet conditions in order to identify the most suitable laboratory vigour test for predicting field emergence under cold, wet conditions. Eight different vigour tests were conducted and each was compared with field emergence under cold, wet conditions. The eight tests conducted, were the cold test, soak test, complex stressing vigour test, electrical conductivity test, accelerated ageing test, tetrazolium test, fast green test and emergence rate test. The soak test was the most sensitive vigour test when considering cold, wet conditions, as it measures seed germination, based on the warm test, after a 48 hour soak in water at 27°C. Correlations found between the soak test and field emergence (53%) under cold, wet conditions was unexpected, since the soak test does not account for low temperatures. The complex stressing vigour test was conducted to study the effect of fluctuating soaking temperatures on germination of maize seed. Seeds of nine maize hybrids were soaked for 48 hours at a moderate temperature (25°C), followed by another 48 hours soak at a low temperature (5°C), and then planted in sand and grown for 4 days at 25°C, before evaluation. Highly significant correlations were found between the complex stressing vigour test and simulated field emergence under both controlled conditions in a glasshouse (89.9%) and cold, wet conditions in the field (90.0%). The complex stressing vigour test was the best test to predict field performance under a wide range of climatic conditions, especially cold, wet conditions. Implementation of the complex stressing test as a routine vigour test, will be to the advantage of maize seed companies, especially in being proactive in predicting emergence of maize hybrids under cold, wet conditions. Copyright / Dissertation (MSc(Agric))--University of Pretoria, 2009. / Plant Production and Soil Science / unrestricted
|
45 |
Antioxidant properties of Lippia javanica (Burm.f.) Spreng. / C. PretoriusPretorius, Corlea January 2010 (has links)
The evolution of aerobic metabolic processes unavoidably led to the production of reactive
oxygen species (ROS). ROS have the ability to cause harmful oxidative damage to
biomolecules. Increased ROS generation and subsequent oxidative stress have been
associated with aging and neurodegenerative disorders such as Parkinson’s and Alzheimer’s
diseases as a result of the extreme sensitivity of the central nervous system to damage from
ROS. Antioxidant defence systems have co–evolved with aerobic metabolic processes to
counteract oxidative damage inflicted by ROS. The impact of neurodegenerative disorders
on society is increasing rapidly as the life expectancy of the global population increases. In
this day and age, a much younger group of the population is also experiencing
neurodegenerative symptoms as a result of the harmful effect of the human
immunodeficiency virus (HIV) on the central nervous system.
Plants are an invaluable source of medicinal compounds. The use of plants for their healing
properties is rooted in ancient times. The aim of this study was to select from twenty one
plants, the plant with the most promising antioxidant activity and to determine whether
extracts of this plant could act as free radical scavengers, comparing the results to Trolox, a
known free radical scavenger. The next step was to isolate and characterize a compound
from an extract exhibiting promising antioxidant activity. Bioassay–guided fractionation was
followed to achieve this.
During screening trials, twenty one plants, namely Berula erecta, Heteromorpha
arborescens, Tarchonanthus camphoratus, Vernonia oligocephala, Gymnosporia buxifolia,
Acacia karroo, Elephantorrhiza elephantina, Erythrina zeyheri, Leonotis leonurus,
Plectranthus ecklonii, P. rehmanii, P. venteri, Salvia auretia, S. runcinata, Solenostemon
latifolius, S. rotundifolius, Plumbago auriculata, Clematis brachiata, Vangueria infausta,
Physalis peruviana and Lippia javanica were selected from literature, based on reported
antioxidant activity within the plant families, for screening of their antioxidant activity. One
hundred and ten extracts were prepared from the leaves, using Soxhlet extraction and the
solvents petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol
(EtOH), consecutively.
The focus during initial screening trials was on chemistry–based assays. The oxygen radical
absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were
employed for the primary screening of the one hundred and ten leaf extracts. The ORAC
assay was used to determine whether the plant extracts were able to scavenge peroxyl
radicals and the FRAP assay was used to determine the reducing abilities of the extracts.
Quantification of the peroxyl radical scavenging activity by the ORAC assay revealed that
activity was observed for most of the extracts, with the ethyl acetate and ethanol extracts of
L. javanica exhibiting the most promising activity. This pattern of activity was also found with the reducing capacity evaluated by the FRAP assay in which the EtOAc and EtOH extracts of
L. javanica also exhibited the most promising activity.
L. javanica was selected for further study by screening for biological activity, employing the
nitro–blue tetrazolium (NBT) assay and thiobarbituric acid reactive substances (TBARS)
assay. Using a cyanide model to induce neurotoxic effects in rat brain homogenate, the
neuroprotective properties of the extracts of L. javanica leaves were examined using the NBT
assay and compared to that of Trolox. The NBT assay determines the level of superoxide
anions. All the extracts of L. javanica significantly reduced superoxide anion generation at all
concentrations used. The petroleum ether and ethyl acetate extracts, at all concentrations,
reduced superoxide anion generation to values lower than that of the control, suggesting that
these extracts may be able to attenuate normal free radical processes in the brain. The
petroleum ether extract exhibited the most promising activity at a concentration of 1.25 and
2.5 mg/ml and also exhibited similar results as the ethyl acetate extract at a lower
concentration than the ethyl acetate extract (2.5 mg/ml compared to 5 mg/ml).
A toxin–solution consisting of hydrogen peroxide (H2O2), iron(III)chloride (FeCl3) and ascorbic
acid was used to induce lipid peroxidation and the ability of the extracts of the leaves of
L. javanica to attenuate lipid peroxidation was investigated in rat brain homogenate and
compared to that of Trolox. All of the extracts of L. javanica significantly attenuated toxininduced
lipid peroxidation at all concentrations used. All of the extracts were also able to
significantly attenuate toxin–induced lipid peroxidation to values lower than that of the control.
These results suggest that all of the extracts of L. javanica possess the ability to attenuate
not only toxin–induced lipid peroxidation, but also lipid peroxidation that occurs during normal
processes in the brain.
The petroleum ether extract was subjected to bioassay–guided fractionation using column
and thin–layer chromatography and the NBT and TBARS assays. Fraction DD1 was
investigated by means of nuclear magnetic resonance, infrared and mass spectrometry. The
exact structure of fraction DD1 was not elucidated.
Considering all the results, it is clear that L. javanica shows great potential as a medicinal
plant with antioxidant activity and may therefore be beneficial in diminishing the destructive
oxidative effects inflicted by free radicals. There are however still many compounds to be
isolated from L. javanica.
Key words: Verbenaceae, Lippia javanica, antioxidant, neurodegeneration, oxygen radical
absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), nitro–blue
tetrazolium assay (NBT), thiobarbituric acid reactive substances assay (TBARS). / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
|
46 |
Antioxidant properties of Lippia javanica (Burm.f.) Spreng. / C. PretoriusPretorius, Corlea January 2010 (has links)
The evolution of aerobic metabolic processes unavoidably led to the production of reactive
oxygen species (ROS). ROS have the ability to cause harmful oxidative damage to
biomolecules. Increased ROS generation and subsequent oxidative stress have been
associated with aging and neurodegenerative disorders such as Parkinson’s and Alzheimer’s
diseases as a result of the extreme sensitivity of the central nervous system to damage from
ROS. Antioxidant defence systems have co–evolved with aerobic metabolic processes to
counteract oxidative damage inflicted by ROS. The impact of neurodegenerative disorders
on society is increasing rapidly as the life expectancy of the global population increases. In
this day and age, a much younger group of the population is also experiencing
neurodegenerative symptoms as a result of the harmful effect of the human
immunodeficiency virus (HIV) on the central nervous system.
Plants are an invaluable source of medicinal compounds. The use of plants for their healing
properties is rooted in ancient times. The aim of this study was to select from twenty one
plants, the plant with the most promising antioxidant activity and to determine whether
extracts of this plant could act as free radical scavengers, comparing the results to Trolox, a
known free radical scavenger. The next step was to isolate and characterize a compound
from an extract exhibiting promising antioxidant activity. Bioassay–guided fractionation was
followed to achieve this.
During screening trials, twenty one plants, namely Berula erecta, Heteromorpha
arborescens, Tarchonanthus camphoratus, Vernonia oligocephala, Gymnosporia buxifolia,
Acacia karroo, Elephantorrhiza elephantina, Erythrina zeyheri, Leonotis leonurus,
Plectranthus ecklonii, P. rehmanii, P. venteri, Salvia auretia, S. runcinata, Solenostemon
latifolius, S. rotundifolius, Plumbago auriculata, Clematis brachiata, Vangueria infausta,
Physalis peruviana and Lippia javanica were selected from literature, based on reported
antioxidant activity within the plant families, for screening of their antioxidant activity. One
hundred and ten extracts were prepared from the leaves, using Soxhlet extraction and the
solvents petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol
(EtOH), consecutively.
The focus during initial screening trials was on chemistry–based assays. The oxygen radical
absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were
employed for the primary screening of the one hundred and ten leaf extracts. The ORAC
assay was used to determine whether the plant extracts were able to scavenge peroxyl
radicals and the FRAP assay was used to determine the reducing abilities of the extracts.
Quantification of the peroxyl radical scavenging activity by the ORAC assay revealed that
activity was observed for most of the extracts, with the ethyl acetate and ethanol extracts of
L. javanica exhibiting the most promising activity. This pattern of activity was also found with the reducing capacity evaluated by the FRAP assay in which the EtOAc and EtOH extracts of
L. javanica also exhibited the most promising activity.
L. javanica was selected for further study by screening for biological activity, employing the
nitro–blue tetrazolium (NBT) assay and thiobarbituric acid reactive substances (TBARS)
assay. Using a cyanide model to induce neurotoxic effects in rat brain homogenate, the
neuroprotective properties of the extracts of L. javanica leaves were examined using the NBT
assay and compared to that of Trolox. The NBT assay determines the level of superoxide
anions. All the extracts of L. javanica significantly reduced superoxide anion generation at all
concentrations used. The petroleum ether and ethyl acetate extracts, at all concentrations,
reduced superoxide anion generation to values lower than that of the control, suggesting that
these extracts may be able to attenuate normal free radical processes in the brain. The
petroleum ether extract exhibited the most promising activity at a concentration of 1.25 and
2.5 mg/ml and also exhibited similar results as the ethyl acetate extract at a lower
concentration than the ethyl acetate extract (2.5 mg/ml compared to 5 mg/ml).
A toxin–solution consisting of hydrogen peroxide (H2O2), iron(III)chloride (FeCl3) and ascorbic
acid was used to induce lipid peroxidation and the ability of the extracts of the leaves of
L. javanica to attenuate lipid peroxidation was investigated in rat brain homogenate and
compared to that of Trolox. All of the extracts of L. javanica significantly attenuated toxininduced
lipid peroxidation at all concentrations used. All of the extracts were also able to
significantly attenuate toxin–induced lipid peroxidation to values lower than that of the control.
These results suggest that all of the extracts of L. javanica possess the ability to attenuate
not only toxin–induced lipid peroxidation, but also lipid peroxidation that occurs during normal
processes in the brain.
The petroleum ether extract was subjected to bioassay–guided fractionation using column
and thin–layer chromatography and the NBT and TBARS assays. Fraction DD1 was
investigated by means of nuclear magnetic resonance, infrared and mass spectrometry. The
exact structure of fraction DD1 was not elucidated.
Considering all the results, it is clear that L. javanica shows great potential as a medicinal
plant with antioxidant activity and may therefore be beneficial in diminishing the destructive
oxidative effects inflicted by free radicals. There are however still many compounds to be
isolated from L. javanica.
Key words: Verbenaceae, Lippia javanica, antioxidant, neurodegeneration, oxygen radical
absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), nitro–blue
tetrazolium assay (NBT), thiobarbituric acid reactive substances assay (TBARS). / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
|
47 |
Synthèse de tétrazoles oxabicycliques, leurs transformations en une vaste diversité de composés hétérocycliques fonctionnalisés et étude en DFT de l’équilibre tétrazole-azidoazométhine avec des motifs de types benzo- et pyrido- diazidodiazinesDeschênes-Simard, Benoît 12 1900 (has links)
Les tétrazoles ont une place importante dans la chimie médicinale contemporaine par leurs caractéristiques spatiales et électroniques uniques. Leur haute teneur en azote leur confère également des qualités requises dans le développement de substances explosives et de haute énergie. Le développement de nouveaux outils synthétiques pour les créer prend donc ici tout son sens.
Dans cet ouvrage, il est tout d’abord question d’une nouvelle méthode de synthèse qui génère des tétrazoles bicycliques en conditions douces par l’entremise d’azidonitriles aliphatiques séparés par trois ou quatre atomes de carbone (effet de proximité) et d’acides de Lewis. De plus, cette méthode de synthèse présente une réaction tandem qui génère des tétrazoles oxabicycliques 1,5-dialkylés via une cycloaddition 1,3-dipolaire diastéréosélective à partir d’azidoacétals ou d’azidocétals arborant un azoture proximal. La réaction s’effectue dans le nitrométhane de 0 °C à la température ambiante avec du TMSCN et est promue par une variété d’acides de Lewis dont le BF3OEt2. Les aspects mécanistiques de la réaction (l’ouverture des acétals, l’équilibre entre les éthers de cyanhydrine, la cycloaddition 1,3-dipolaire diastéréosélective et le réarrangement de Boyer-Schmidt-Aubé) ainsi que les paramètres réactionnels (solvants, acides de Lewis, stœchiométrie, sources de cyanure, etc.) seront en outre abordés.
Ensuite, le motif de tétrazole oxabicyclique a été l’objet de diversifications, de fonctionnalisations et de transformations afin d’en valoriser l’utilité. Des réactions d’alkylations, d’azoturations radicalaires, de bêta-éliminations et de diversifications de la chaîne latérale ont été étudiées. De ces mêmes motifs de tétrazoles, la synthèse de tétrazoles azabicycliques et celle de morpholines 2,6-polysubstituées ont aussi été investiguées. La synthèse d’un sel de tétrazolium et l’alkylation de 5-tétrazolyllithiums ont aussi fait l’objet d’études préliminaires.
Enfin, une étude théorique en DFT a été effectuée pour mieux comprendre l’équilibre tétrazole-azidoazométhine sur des motifs de types benzo- et pyrido- diazidodiazines parents à la 6-azidotétrazolo[5,1-a]phthalazine, un métabolite toxique du Gymnodinium breve (Ptychodiscus brevis, aussi actuellement connu sous le nom de Karenia brevis). Les aspects thermodynamiques, les états de transition, les orbitales HOMO, les cartes de potentiels d’ionisation locaux, les cartes de densité de la LUMO, les effets de solvant et certains paramètres permettant d’évaluer l’aromaticité (indices de Bird, ordres de liaison minimaux de Jug, indices HOMA et NICS) ont été considérés dans l’étude. Le constat a été que certaines des analyses théoriques peuvent constituer de bons outils prédictifs, particulièrement avec des considérations thermodynamiques, mais que cette approche a aussi ses limites qui sont principalement dues aux incertitudes inhérentes aux calculs théoriques. / Tetrazoles have an important place in contemporary medicinal chemistry due to their unique spatial and electronic characteristics. Their high nitrogen content also gives them the qualities required for the development of explosive and high energy substances. The development of new synthetic tools to create them takes here all its meaning.
Therefore, in this work, a new synthesis method that generates bicyclic tetrazoles under mild conditions using aliphatic azidonitriles separated by three or four carbon atoms (proximity effect) and Lewis acids will first be discussed. In addition, a tandem reaction which generates 1,5-dialkylated oxabicyclic tetrazoles via a diastereoselective 1,3-dipolar cycloaddition from azidoacetals or azidoketals bearing a proximal azide will also be disclosed. The reaction is carried out in nitromethane at 0 °C to room temperature with TMSCN and is promoted by a variety of Lewis acids including BF3OEt2. The mechanistic aspects of the reaction (acetal opening, equilibrium between cyanohydrin ethers, diastereoselective 1,3-dipolar cycloaddition and Boyer-Schmidt-Aubé rearrangement) as well as the reaction parameters (solvents, Lewis acids, stoichiometry, cyanide sources, etc.) will be discussed.
Furthermore, the oxabicyclic tetrazole unit was involved in diversifications, functionalizations and transformations to enhance its utility. Reactions of alkylations, radical azidations, beta-eliminations and diversifications of the side chain were applied. From these same tetrazole units, the synthesis of azabicyclic tetrazoles and that of 2,6-polysubstituted morpholines was also investigated. The synthesis of a tetrazolium salt and the alkylation of 5 tetrazolyllithiums were also the subject of preliminary studies.
Finally, a theoretical DFT study was carried out to have a better understanding of the tetrazole-azidoazomethine equilibrium on benzo- and pyrido- diazidodiazines similar to 6 azidotetrazolo [5,1-a] phthalazine, a toxic metabolite from Gymnodinium breve (Ptychodiscus brevis, actually known as Karenia brevis). Thermodynamic aspects, transition states, HOMO orbitals, local ionization potential maps, LUMO density maps, solvent effects, and some parameters to evaluate the aromaticity (Bird index, Jug minimum bond order, HOMA index and NICS) were considered in the study. It has been noted that some of the theoretical analysis can be good predictive tools, particularly with thermodynamic considerations, but they also have their limits, which are mainly due to the uncertainties inherent in the theoretical calculations.
|
Page generated in 0.0652 seconds