• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 51
  • 1
  • Tagged with
  • 181
  • 181
  • 21
  • 20
  • 20
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data

Murad, Idris 2009 May 1900 (has links)
Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.
82

Petrographic, Mineralogic, and Geochemical Studies of Hydrocarbon-derived Authigenic Carbonate Rock from Gas Venting, Seepage, Free Gas, and Gas Hydrate Sites in the Gulf of Mexico and offshore India

Jung, Woodong 2008 December 1900 (has links)
Authigenic carbonate rock (ACR) is derived from microbial oxidation of methane, biodegradation of crude oil, and oxidation of sedimentary organic matter. The precipitation of ACR was characterized petrographically, mineralogically, and geochemically. ACR collected from the seafloor in the Gulf of Mexico (GOM) and ACR recovered from drilled cores in the Krishna-Godawari (KG) basin offshore India were used. All study sites are associated with hydrocarbon gas venting, seepage, free gas, or gas hydrate. ACR from the GOM is densely cemented and extremely irregular in shape, whereas ACR from offshore India is generally an oval-shaped smooth nodule and also densely cemented. The dominant mineral in ACR is authigenic calcite. ACR contains carbon derived from sedimentary organic carbon oxidation that geologically sequesters much fossil carbon. Bulk carbon and oxygen isotopes of ACR were measured. ACR from the GOM is strongly depleted in 13C with ?13C of ?42.5? and enriched in 18O with ?18O of 4.67?. The ?13C of hydrocarbon is typically more depleted in 13C than in the associated ACR. The reason is that authigenic carbonate cements from hydrocarbon oxidation generally enclose skeletal material characterized by normal marine carbonate. Three groups that represent different hydrocarbon sources to ACR were classified in this study: primary carbon sources to ACR from (1) methane plus biodegraded oil, (2) methane, or (3) biodegraded oil. Wide ranges in ?13C (?49.12 to 14.06?) and ?18O ( 1.27 to 14.06?) were observed in ACR from offshore India. In sediments, the ?13C may be affected by differences in the rate of organic carbon oxidation, which generate varying ?13C with depth during methanogenesis. Based on the wide range in ?13C, ACR from offshore India was classified: (1) ?13C may reflect high rates of organic carbon oxidation, (2) ACR may be derived primarily from methane oxidation, and (3) ?13C may reflect low rates of organic carbon oxidation. ?18O values are heavier than those of normal marine carbonates. The ?18O may be caused by reaction with deep-sourced water that was isotopically heavier than ambient seawater. Some samples may reflect heavy ?18O from gas hydrate decomposition, but it would not cause significant heavy oxygen isotopes.
83

An Experimental Setup to Study the Settling Behavior of Epoxy Based Fluids

El-Mallawany, Ibrahim Ismail 2011 May 1900 (has links)
This thesis is part of a project funded by the Minerals Management Service (MMS) (now Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE)) to study the use of epoxy to plug hurricane damaged wells. Some of the wells destroyed by hurricanes are damaged to an extent that vertical intervention from the original wellhead is not possible. These wells have to be plugged to prevent future flows through the well to protect the environment. Cement is usually the preferred plugging material because it is very cheap compared to other materials like epoxy. However, cement can easily get contaminated by sea water or brines present in wells as completion fluids. Therefore, to be able to use cement it has to be placed at the bottom of the well by drilling an offset well all the way to the bottom of the original well. Epoxy, on the other hand, being much more chemically stable can be placed at the very top of the well and let to settle by gravity without fearing contamination. Therefore, in wells described above, epoxy can be much more economical than cement. Placing epoxy at the top of a well and letting it settle by gravity can also be more economical than using cement in other situations such as in a leaking annulus of a well where circulation in that annulus is not possible, or if a well that has been previously plugged starts leaking again after the rig has been removed. Placing epoxy in the manner described can be achieved without using a rig and therefore, would be much more economical than cement. One of the most important factors in this process is to be able to predict the settling velocity of the epoxy to be able to determine the required setting time of the epoxy so that the epoxy does not set prematurely. In addition, it is important to evaluate whether the epoxy can successfully settle to the bottom and how much of it will adhere to the pipe walls while freefalling. This thesis aims to design, build and run an experimental setup that would help study the settling velocity of epoxy. Some experiments were conducted to assess the effect of different parameters that might affect the settling velocity of the epoxy such as the epoxy’s density, the annulus size and the inclination angle. The results show that the settling velocity was proportional to the epoxy’s density. Also the settling speed was almost double in experiments done at an angle compared to experiments done at vertical position. The annulus size did not have any clear effect on the settling speed. The adhesion to the pipe walls was found to be proportional to the epoxy’s viscosity and angle of inclination and was inversely proportional to the annulus size.
84

Remote sensing analysis of natural oil and gas seeps on the continental slope of the northern Gulf of Mexico

De Beukelaer, Sophie Magdalena 15 November 2004 (has links)
Natural hydrocarbon seeps harbor distinctive geological, chemical, and biological features in the marine environment. This thesis verified remote sensing signatures of seeps using in-situ observation and repeated collections of satellite imagery. Bubble streams in the Gulf of Mexico water column from four natural seep sites on the upper continental slope were imaged by a side-scan sonar, which was operated from a submarine near the seafloor, and by acoustic profilers, which were operated from surface ships. These data were correlated with sea surface slicks imaged by Synthetic Aperture Radar (SAR) on the RADARSAT satellite. Comparing non-oily bubble streams from rapidly venting mud volcanoes with oily bubble streams from shallow deposits of gas hydrate showed that they produced notably different signatures. Non-oily bubbles produced high backscatter on the side-scan sonar records, but were difficult to detect with the acoustic profilers. Oily bubbles from hydrate deposits produced acoustic shadows on the side-scan sonar records. The oily bubbles generated clear signatures extending from the seafloor to the near surface on the acoustic profile records. RADARSAT SAR images verified the presence of surface oil slicks over the hydrate deposits, but not over the mud volcanoes. This indicates that SAR imagery will not be able to capture every oil and gas seep in a region because non-oily bubble streams do not create surface oil slicks. A total of 113 natural oily seep sources were identified based on surface slicks in eleven SAR images collected over the northern continental slope. A persistence analysis verified that SAR is a dependable tool for capturing oil slicks because 93.5% of the slick sources identified in the 2001 images were corroborated with slicks in the 2002 images. The sources ranged in depth from 100 to 2000 m and 79% of the sources were in 900 meters or greater of water. Seventy-six percent of the seep sources were associated with salt less than 1500 m below the seafloor and none of the sources were located in the bottom of salt withdrawal basins. Geographical Information Systems (GIS) proved to be a useful tool in these analyses.
85

Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards

Brand, John Richard 12 April 2006 (has links)
Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from shallow-emplaced salt sheets. The transition from regional to local salt tectonics was identified through structural deformation of the stratigraphic section on the seismic data and occurred no later than ~450,000 years ago. From ~450,000 years to present, slope depositional processes have become the dominant geologic process in the study area. Six stratigraphic sequences (I-VI) were identified in the study area and found to correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed sections were the key to the correlation. The sequence stratigraphy for the Eastern Mississippi Fan can be extended ~28 miles west, adding another ~720 square miles to the interpreted Fan. A previously defined channel within the Eastern Fan was identified in the study area and extended the channel ~28 miles west. Previous work on the Eastern Fan identified the source of the Fan to be the Mobile River; however, extending the channel west suggests the sediment source to be from the Mississippi River, not the Mobile River. Further evidence for this was found in ponded turbidites whose source has been previously established as the Mississippi River. Ages of the stratigraphic sequences were compared to changes in eustatic sea level. The formation stratigraphic sequences appear decoupled from sea level change with ?pseudo-highstands? forming condensed sections during pronounced Pleistocene sea level lowstands. Miocene and Pleistocene depositional analogues suggest the location of the shifting Mississippi River Pleistocene depocenter is a more dominant influence on sequence formation. Thus, the application of traditional sequence interpretation with respect to sea level change should be reconsidered to also account for the shifting depocenter for both the study area as well as the broader Eastern Mississippi Fan.
86

Ocean biogeochemistry in the northern Gulf of Mexico, the East/Japan Sea, and the South Pacific with a focus on denitrification

Kim, Il Nam, 1976- 12 July 2012 (has links)
Ocean nitrogen fixation and denitrification are crucial nitrogen source and sink mechanisms for the global ocean environment. While recent studies have reported that oceanic denitrification has increased over the last few decades, others have suggested that global ocean nitrogen fixation rates have been underestimated, and still others that anthropogenic perturbations have altered the global nitrogen cycle. This implies that the current estimates of the oceanic nitrogen inventory are incomplete and they need to be revised with more information. In addition, current denitrification estimates need to be reexamined due to their large associated uncertainties. Thus, I have conducted research estimating denitrification rates in three different locations: the northern Gulf of Mexico (GOM), the East/Japan Sea (EJS), and the South Pacific: from coastal to marginal to open ocean scale in different oceanographic conditions. Denitrification rates in the bottom layer (including bottom waters+sediments) at the shallow and often hypoxic northern GOM ranged from 103-544 [mu]mol N m⁻² d⁻¹ (=1.4 to 7.4 Gg N mon⁻¹ with area=3.24x10¹⁰m²), and were controlled not only by biogeochemical factors (i.e. organic matter supply and remineralization), but also by physical factors (i.e. stratification and relative contributions from different water masses). Despite high dissolved oxygen concentrations, the significant decrease in nitrate concentrations below the expected levels, low N/P ratio (<12.4), and deep nitrite peak in the bottom layer indicate a presence of denitrification in EJS, confined at the Tatar Strait and the Ulleung Basin areas. The estimated denitrification rates range from 0.3 to 33.2 [mu]mol N m⁻² d⁻¹, and was comparable to the directly measured denitrification rates from sediment samples. The high-quality repeat hydrographic datasets observed at 32°S of the South Pacific Ocean offer an opportunity to estimate water column denitrification rates on a basin-scale in the open ocean away from the Eastern Tropical Pacific oxygen minimum zones. The mean water column denitrification rates in the oxygen minimum layer of P06 line (32°S) were estimated to range between 7.1 and 18.5 [mu]mol N m⁻² d⁻¹. The results imply that, although very small at any particular site, once integrated over a basin-scale, the open ocean water column denitrification can be a significant component of the oceanic nitrogen budget. Denitrification is subject to seasonal, decadal and possibly climate scale variations. While it is commonly estimated at the oxygen minimum zones or sediments, denitrification is not merely confined to such regions only, and small amounts of denitrification occur in other oceanic parts. Once integrated, it may be quantitatively significant for the world's oceans. Denitrification is playing a significant role in local, regional, and global ocean scales. In the future, we need to consider variability of denitrification in coastal regions, and to investigate denitrification in unexpected and unexplored regions, in order to improve our knowledge on global oceanic mass balance. / text
87

Influence of the Mississippi River plume on diazotroph distributions in the northern Gulf of Mexico during summer 2011

Knapke, Ellen Marie 09 November 2012 (has links)
In the subtropical oligotrophic ocean, nitrogen fixation is an important source of new nitrogen (N) for supporting biological production. Previous studies have found that nitrogen-fixing Diatom-Diazotroph Associations (DDAs) are in high abundance in the intermediate salinity zone of large river plumes such as the Amazon and Mekong rivers, while Trichodesmium spp. becomes more abundant at higher salinities. This recurring pattern in the Amazon River plume suggests that strong salinity and nutrient gradients within the river plumes may lead to a cascade in diazotroph communities. I hypothesized that the Mississippi River, a major source of freshwater, nutrients and sediments to the northern Gulf of Mexico, creates a similar distribution of diazotroph communities. The relationship between large diazotrophs and salinity was examined in samples collected in July 2011 during a flood outflow from the Mississippi River. The dominant DDA, Hemiaulus spp. – Richelia spp., was at greatest abundance (≈31,000 cells L-1) west of the birdfoot delta on the periphery of the plume (≈29 salinity) where bottom water hypoxia was also observed. Trichodesmium spp., a cyanobacterium genus that occurs in both colonial and free trichome morphologies, was abundant at both high (≈35) salinities east of the delta reaching 20+ colonies L-1, as well as in the fresher (≈28) waters of the plume where it reached 3,500 trichomes L-1. Diazotroph distributions were separated east and west of the Mississippi River outflow, with DDAs being most abundant over bottom water hypoxic regions to the west and Trichodesmium spp. in high abundance to the east. The diazotroph – salinity gradient relationships present within the Amazon River plume were not present within the Gulf of Mexico. This study suggests that environmental factors other than salinity, such as nutrients or hypoxia, are influencing the distribution of diazotrophs around the Mississippi River plume. The seasonal hypoxia seen in the Gulf of Mexico with the co-occurring DDA increase could appear in other river systems. / text
88

The effects of confining minibasin topography on turbidity current dynamics and deposit architecture

Maharaj, Vishal Timal 25 February 2013 (has links)
This dissertation advances our understanding of how turbidity currents interact with three-dimensional (3-D) minibasin topography and the resulting deposits that form. Conceptual Gulf of Mexico-centric models of minibasin fill development have become the foundation for exploring and identifying strategic deep-water hydrocarbon reserves on continental slopes around the world. Despite the abundance of subsurface data, significant questions remain about the 3-D physical processes through which minibasins fill and the relationship between these processes and the topography of the basin. To overcome this problem, I utilize techniques in physical laboratory modeling to query established models of the role that turbidity currents play in minibasin fill development, and observe the relationships between fill from the Lobster minibasin located in a proximal continental slope position in the Gulf of Mexico and from the Safi Haute Mer (SHM) minibasin located in the distal continental slope of offshore western Morocco. First, existing published literature are reviewed and assessed for the known state of minibasin development and fill processes, and the strengths and weaknesses of our current knowledge base. Second, results are presented from two series of experiments that document the interaction between steady, depletive turbidity currents and 3-D minibasin topography. Experimental results suggest that turbidity currents produce deposits that are more likely to drape pre-flow topography than pond within it. Turbidity current velocity data show a strong 3-D physical component in minibasin fill sedimentation that also influences extra-basinal sedimentation patterns. Details of these results provide insight into processes that have not been previously considered in published conceptual models of minibasin fill. Third, a comparison of the two subsurface datasets show that the types and abundance of architectural elements vary depending on the location of the minibasin on the continental slope (i.e. proximal vs. distal), and suggests key differences in the processes responsible for their infilling. Finally, a comparison of experimental results to preserved deposit architectures in the Lobster and SHM datasets suggest a more complex relationship of process-driven sedimentation than that derived primarily from suspension fallout. This improved understanding of minibasin fill is applicable to industry for increasing confidence in subsurface interpretations and reducing risk while exploring for quality reservoirs in deepwater regions. / text
89

Structural framework and seismic geomorphology of the Cretaceous beneath the Mad Dog Area, deep to ultradeep waters Gulf of Mexico

Markez, Damian 01 November 2013 (has links)
Recent drilling of deep stratigraphy in subsalt offshore Gulf of Mexico has revealed the presence of thick, amalgamated, Cretaceous siliciclastic reservoirs with the potential to become valid exploration targets. Similar to the Lower Tertiary deepwater play, the significant down-dip distance (> 400 km) from the source deltaics, the data gap across the modern structurally complex salt-tectonics-dominated slope and the difficulties of imaging subsalt stratigraphy pose challenges for the construction of meaningful deepwater system models to aid in exploration and appraisal efforts. A 3D seismic dataset in the Mad Dog field at the basinward end of the modern allochthonous salt canopy and outboard of the Sigsbee Escarpment offers the opportunity to study the nature of the deep stratigraphy at central positions in the basin. The nature of the Cretaceous sedimentary system has been investigated through detailed structural and seismic geomorphologic mapping. An early syndepositional contractional event has been identified and temporally associated with Mesozoic emplacement of a deep salt sheet. These events are masked by the major Neogene-age phase of fold amplification that dominates the present-day subsalt structural framework. Ponded-basin deepwater sedimentation processes control early phases of deposition in the Cretaceous Mad Dog area and sediment-gravity flows are deposited as complexes of low sinuosity amalgamated channelized deposits in roughly-confined sediment pathways. Ponded fills show internal lateral accretion architectures that grow sigmoid in nature as the migrating systems interact with the approaching minibasin margins making evident the structural control on sediment architecture. Later phases of deposition are characterized by slightly sinuous feeder channels with multiple lobe development at their terminus. Variable directions of sediment source pathways indicate a linear-sourced slope apron depositional model for these systems. In addition to the more structured morphologic elements, there were also pervasive mass-transport processes active, presumably triggered by Mesozoic halokinesis. Data in sparse deep wells in the GoM that penetrate the Cretaceous suggest that the Late Cretaceous deepwater depositional system was composed of coarse-grained high density gravity flows. The geometries seen in seismic beneath the Mad Dog area support the existence of such a basinwardly extensive deepwater fan systems developed during the Cretaceous, and the low sinuosity channel geometries and small length:width ratio and amalgamated nature of fan lobes suggest that these systems may have indeed been high-density in nature. / text
90

Cooperative binational coastal zone management : recommendations for Texas and Tamaulipas

Barraza Lizárraga, Eleonor 21 November 2013 (has links)
The Gulf of Mexico is a shared resource at risk. It is facing many problems such as exponential population growth, degrading water quality, consequences of oil and gas activities, unsustainable exploitation of resources, and lack of public education and political interest. In response, Mexico and the United States have devised their own set of programs and strategies to best manage their coastal zones. There have been a few official coastal management efforts between the U.S. Gulf states and Mexico. However, the existence of these collaborative programs does not supplant the need for a binational, integrated coastal management effort. Texas and Tamaulipas have participated in these cooperation programs, but direct coastal collaboration between the two states has been limited. Although there is an obvious disparity between the two regarding CZM practices, both states face similar challenges that require a cooperative effort and combined resources. This report explores different alternatives for binational cooperation between Texas and Tamaulipas at the regional level, in the context of the existing CZM frameworks and strategies of each state. / text

Page generated in 0.0899 seconds