• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Hilbert Transform

McGovern, James Denis 04 1900 (has links)
Abstract Not Provided. / Thesis / Master of Science (MSc)
2

Unit Circle Roots Based Sensor Array Signal Processing

Smith, Jared P. 27 May 2022 (has links)
No description available.
3

On Random Polynomials Spanned by OPUC

Aljubran, Hanan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We consider the behavior of zeros of random polynomials of the from \begin{equation*} P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z) \end{equation*} as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.
4

Att få grepp om begrepp : En kvalitativ studie av gymnasieelevers begreppsförståelse inom trigonometri / Grasp the concept : A qualitative study of the conceptual understanding of trigonometry among high school students

Carlzon, Madeleine January 2019 (has links)
Den här studien undersöker gymnasieelevers begreppsförståelse inom trigonometri. Eleverna, som samtliga läser Ma 4, besvarade anonymt två frågeformulär där det ena bestod av en öppen fråga, medan det andra var upplagt som ett test med uppgifter att lösa. Den kvalitativa analysen baseras på Tall och Vinners (1981) teori om begreppsbild och Sfards (1991) uppdelning av begreppsförståelse i de tre processerna interiorisering, kondensering och reifiering. Resultatet indikerar att elever tenderar att använda cirkeltrigonometri före triangeltrigonometri för att lösa uppgifter, men att majoriteten av deras begreppsbilder består av både och. Det visade sig att radianer var det trigonometriska begrepp eleverna hade svårast för. Detta stämmer överens med tidigare forskning på området. Tre elever analyseras djupare med avseende på hur långt de har kommit i sin utveckling av begreppsförståelse inom trigonometri. Det ges även exempel på hur utvecklingsfaserna kan ge sig till uttryck hos enskilda elever. Såväl begreppsbild som vilka stadier eleverna befinner sig på i sin begreppsförståelse varierar stort. / This study investigates the conceptual understanding of high school students in a trigonometry context. The students, all of them taking the Swedish math course Ma 4, anonymously answered two questionnaires, one of them containing an open question, while the other was constructed like a test with problems to solve. The qualitative analysis is based on Tall & Vinner’s (1981) theory of concept image and Sfard’s (1991) division of conceptual understanding into the three processes interiorization, condensation and reification. The result indicates that students tend to use circle trigonometry over triangle trigonometry for problem solving, however the majority of their concept images consist of both. Radians seemed to be the trigonometrical concept that the students had most trouble understanding. This corresponds with earlier research of trigonometry. In the analysis three students are more deeply analysed, based on how far they have come in their development of trigonometric conceptual understanding. Furthermore there are concrete examples of how the phases of development can be presented among individual students. The concept image as well as the levels of the students’ conceptual understanding vary considerably.
5

ON RANDOM POLYNOMIALS SPANNED BY OPUC

Hanan Aljubran (9739469) 07 January 2021 (has links)
<div> <br></div><div> We consider the behavior of zeros of random polynomials of the from</div><div> \begin{equation*}</div><div> P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z)</div><div> \end{equation*}</div><div> as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.</div>
6

Medidas não triviais no círculo unitário e polinômios para-ortogonais associados / Nontrivial measures on the unit circle and associated para-orthogonal polynomials

Veronese, Daniel Oliveira [UNESP] 19 July 2016 (has links)
Submitted by DANIEL OLIVEIRA VERONESE null (veronese@icte.uftm.edu.br) on 2016-07-27T16:57:24Z No. of bitstreams: 1 Tese_Daniel.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-07-29T13:17:56Z (GMT) No. of bitstreams: 1 veronese_do_dr_sjrp.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5) / Made available in DSpace on 2016-07-29T13:17:56Z (GMT). No. of bitstreams: 1 veronese_do_dr_sjrp.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5) Previous issue date: 2016-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dado um par de sequências reais, sendo uma delas sequência encadeada positiva, podemos considerar uma sequência de polinômios que satisfazem uma relação de recorrência de três termos, de tal modo que os zeros destes polinômios sejam simples e estejam sobre o círculo unitário. Neste trabalho mostramos que é possível obter, a partir dessa fórmula de recorrência, uma única medida não trivial no círculo unitário. Provamos também que a sequência de polinômios gerados por essa relação de recorrência é uma sequência de polinômios para-ortogonais associados à medida obtida. Além disso, obtemos limitantes para os zeros extremos de tais polinômios e fornecemos estimativas para o suporte da medida associada. / Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always possible to obtain a unique nontrivial measure on the unit circle. We also prove that the generated sequence of polynomials is a sequence of para-orthogonal polynomials associated with this measure. Furthermore, we obtain bounds for the extreme zeros of these polynomials and also provide estimates for the support of the associated measure.
7

Polinômios ortogonais no círculo unitário: medidas associadas a sequências periódicas / Orthogonal polynomials on the unit circle: associated measures with periodic sequences

Silva, Jairo Santos da [UNESP] 20 February 2017 (has links)
Submitted by JAIRO SANTOS DA SILVA null (jairomath@hotmail.com) on 2017-02-22T18:48:46Z No. of bitstreams: 1 Tese_Final_Jairo_Santos.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-24T20:29:28Z (GMT) No. of bitstreams: 1 silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Made available in DSpace on 2017-02-24T20:29:28Z (GMT). No. of bitstreams: 1 silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) Previous issue date: 2017-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Foi mostrado recentemente que associado a um par de sequências reais (onde uma delas é uma sequência encadeada positiva) existe uma única medida de probabilidade não trivial com suporte no círculo unitário. No presente trabalho nossa principal contribuição é estudar o comportamento dessas medidas quando impomos algumas restrições de sinal e periodicidade sobre essas sequências. Precisamente, fornecemos uma estimativa para o suporte de tais medidas no caso em que a sequência que não é a sequência encadeada positiva satisfaz uma propriedade de sinal alternante. Além disso, quando esse par é tal que a sequência de parâmetros minimal da sequência encadeada positiva e a outra sequência são periódicas, mostramos que o estudo dessas medidas é completamente equivalente ao estudo de medidas associadas a coeficientes de Verblunsky periódicos: o que nos permite neste caso, apresentar, estudar e caracterizar um novo espaço de medidas no círculo unitário. Por fim, estabelecemos informações sobre o suporte essencial de medidas no caso limite periódico, isto é, quando as sequências reais associadas são limite periódicas. / It was shown recently that associated with a pair of real sequences (where one of them is a positive chain sequence) there exists a unique nontrivial probability measure supported on the unit circle. In the present work, our main contribution is to study the behavior of these measures when we impose some restrictions of sign and periodicity on these sequences. Precisely, we provide an estimate for the support of such measures in the event that the sequence which is not the positive chain sequence, satisfies an alternating sign property. Moreover, when this pair is such that the minimal parameter sequence of the positive chain sequence and the other sequence are periodic, we show that the study of these measures is completely equivalent to the study of measures associated with periodic Verblunsky coefficients: which allows us, in this case, to present, to study and to characterize a new space of measures on the unit circle. Finally, we establish information about the essential support of measures in the limit periodic case, i.e., when the associated real sequences are limit periodic.

Page generated in 0.1025 seconds